Skip to main content

Advertisement

Log in

Effect of metal oxide fillers in urethane dimethacrylate polymer with glycerol obtained by photopolymerization synthesis

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Urethane dimethacrylate (UDMA) is a monomer widely used in photopolymerization reactions to produce biomaterials, due to its advantageous properties such as mechanical resistance and relatively low viscosity. However, this monomer is expensive. Reducing the quantity of UDMA monomer required to obtain the final polymer, without losing its main properties, is essential not just in terms of costs but also green chemistry principles. It has been demonstrated that glycerol inclusion into the polymeric matrix during polymerization is one way to achieve this goal. Thus, this work proposes the insertion of glycerol and metal oxide fillers (Al2O3, TiO2, Nb2O5, La2O3 and ZrO2) in the photopolymerization of urethane dimethacrylate, with the aim to study how these effects the degree of conversion, as well as the thermal properties of the final polymer. The thermal properties were evaluated using simultaneous thermogravimetry–differential thermal analysis (TG–DTA) and differential scanning calorimetry (DSC). The degree of conversion/rate of polymerization was calculated using mid-infrared spectroscopy (MIR). The polymers filled with Al2O3, TiO2, Nb2O5 and La2O3 exhibited good conversion values of 87.42, 78.47, 77.64 and 75.51%, respectively. For all polymers synthesized, no significant changes were observed in their thermal stability. Lastly, it is suggested that the incorporation of the oxides in the monomeric mixture correlate to the degree of conversion, with scanning electronic microscopy (SEM) analysis suggesting oxide dispersion interferes with the morphology of the polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Code availability

Not applicable.

References

  1. Marghalani HY (2015) Resin-based dental composite materials. In: Antoniac I. (eds) Handbook of Bioceramics and Biocomposites. Springer, Cham

  2. Barszczewska-Rybarek IM (2019) A guide through dental dimethacrylate polymer network structural characterization and interpretation of physico-mechanical properties. Mater 12:40–57

    Article  Google Scholar 

  3. Melinte V, Buruiana T, Balan L, Buruiana EC (2012) Photocrosslinkable acid urethane dimethacrylates from renewable natural oil and their use in the design of silver/gold polymeric nanocomposites. React Funct Polym 72:252–259

    Article  CAS  Google Scholar 

  4. Antonucci JM, Regnault WF, Skrtic D (2010) Polymerization shrinkage and stress development in amorphous calcium phosphate/urethane dimethacrylate polymeric composites. J Compos Mater 44:355–367

    Article  CAS  Google Scholar 

  5. Nguyen JF, Pomes B, Sadoun M, Richaud E (2019) Curing of urethane dimethacrylate composites: a glass transition study. Polym Test 80:106–113

    Article  Google Scholar 

  6. Guo X, Cheng Q, Wang H, Yu G, Tian Z, Shi Z, Cui Z, Zhu S (2020) Synthesis, characterization, and aging resistance of the polyurethane dimethacrylate layer for dental restorations. Eur J Oral Sci. https://doi.org/10.1111/eos.12674

    Article  PubMed  Google Scholar 

  7. Xu Y, Wang H, Xie D (2018) Preparation of new low viscosity urethane dimethacrylates for dental composites. J Biomater Sci, Polym Ed 29:1011–1025

    Article  CAS  Google Scholar 

  8. Lalevée J, Fouassier JP (2015) Dyes and chromophores in polymer science. ISTE, London

    Book  Google Scholar 

  9. Fouassier JP, Lalevée J (2012) Photoinitiators for polymer synthesis: scope, reactivity and efficiency. Wiley, Germany

    Book  Google Scholar 

  10. Allonas X, Lalevée J, Fouassier JP (2003) Investigation of cleavage processes in photoinitiators: from experiments to molecular modeling. J Photoch Photobio A 159:127–133

    Article  CAS  Google Scholar 

  11. Tehfe MA, Louradour F, Lalevée J, Fouassier JP (2013) Photopolymerization reactions: on the way to a green and sustainable chemistry. Appl Sci 3:490–514

    Article  CAS  Google Scholar 

  12. Fouassier JP, Allonas X, Burget D (2003) Photopolymerization reactions under visible lights: principle, mechanism and examples of applications. Prog Org Coat 47:16–36

    Article  CAS  Google Scholar 

  13. Anastas P, Eghbali N (2010) Green chemistry: principles and practice. Chem Soc Rev 39:301–312

    Article  CAS  Google Scholar 

  14. Sheldon RA (2008) E factors, green chemistry and catalysis: an odyssey. Chem Commun 29:3352–3365

    Article  Google Scholar 

  15. Alarcon RT, Gaglieri C, Bannach G (2018) Dimethacrylate polymers with different glycerol content. J Therm Anal Calorim 132:1579–1591

    Article  CAS  Google Scholar 

  16. Alarcon RT, Holanda BBC, Rinaldo D, Caires FJ, Almeida MV, Bannach G (2017) Synthesis thermal studies and conversion degree of dimethacrylate polymers using new non-toxic coinitiators. Quim Nova 40:363–370

    CAS  Google Scholar 

  17. Gu Y, Jérôme F (2010) Glycerol as a sustainable solvent for green chemistry. Green Chem 12:1127–1138

    Article  CAS  Google Scholar 

  18. Análise de conjuntura dos biocombustíveis ano 2018 (2019) Ministério de Minas e Energia, Rio de Janeiro. https://www.epe.gov.br. Acessed 01 Jun 2020

  19. Habib E, Wang R, Wang Y, Zhu M, Zhu XX (2016a) Inorganic fillers for dental resin composites: present and future. ACS Biomater Sci Eng 2:1–11

    Article  CAS  Google Scholar 

  20. Móczó J, Pukánszky B (2008) Polymer micro and nanocomposites: structure, interactions, properties. J Ind Eng Chem 14:535–563

    Article  Google Scholar 

  21. Turssi CP, Ferracane JL, Vogel K (2005) Filler features and their effects on wear and degree of conversion of particulate dental resin composites. Biomater 26:4932–4937

    Article  CAS  Google Scholar 

  22. Melinte V, Buruiana T, Chibac A, Lupu N, Grigoras M, Buruiana EC (2015) Preparation and properties of photopolymerized hybrid composites with covalently attached magnetite nanoparticles. Chem Eng J 259:542–551

    Article  CAS  Google Scholar 

  23. Chibac AL, Melinte V, Buruiana T, Mangalagiu I, Buruiana EC (2015) Preparation of photocrosslinked sol-gel composites based on urethane-acrylic matrix, silsesquioxane sequences, TiO2, and Ag/Au nanoparticles for use in photocatalytic applications. Polym Chem 53:1189–1204

    Article  CAS  Google Scholar 

  24. Alarcon RT, Gaglieri C, de Oliveira AR, Bannach G (2018) Use of DSC in degree of conversion of dimethacrylate polymers: easier and faster than MIR technique. J Therm Anal and Calorim 132:1423–1427

    Article  CAS  Google Scholar 

  25. Alarcon RT, Dos Santos GC, de Oliveira AR, Silva-Filho LC, Gilbert B (2019) Synthesis of luminescent polymers in the UV light region from dimethacrylate monomer using novel quinoline dyes. J Appl Polym Sci 136:47461–47468

    Article  Google Scholar 

  26. De Oliveira DSBL, De Oliveira LSBL, Alarcon RT, Holanda BBC, Bannach G (2017) Use of curcumin and glycerol as an effective photoinitiating system in the polymerization of urethane dimethacrylate. J Therm Anal Calorim 128:1671–1682

    Article  Google Scholar 

  27. Nimlos MR, Blanksby SJ, Qian X, Himmel ME, Johnson DK (2006) Mechanism of glycerol dehydration. J Phys Chem A 110:6145–6156

    Article  CAS  Google Scholar 

  28. Katryniok B, Paul S, Bellière-Baca V, Rey P, Dumeignil F (2010) Glycerol dehydration to acrolein in the context of new uses of glycerol. Green Chem 12:2079–2098

    Article  CAS  Google Scholar 

  29. Yun D, Yun YS, Kim TY, Park H, Lee JM, Han JW, Yi J (2016) Mechanistic study of glycerol dehydration on Brønsted acidic amorphous aluminosilicate. J Catal 341:33–43

    Article  CAS  Google Scholar 

  30. Bannach G, Cavalheiro CCS, Calixto L, Cavalheiro ETG (2015) Thermoanalytical study of monomers: BisGMA, BisEMA, TEGDMA UDMA and their mixture. Braz J Therm Anal 4:28–34

    Article  Google Scholar 

  31. Filatova EO, Konashuk AS (2015) Interpretation of the changing the band gap of Al2O3 depending on its crystalline form: connection with different local symmetries. J Phys Chem C 119:20755–20761

    Article  CAS  Google Scholar 

  32. Kambur A, Pozan GS, Boz I (2012) Preparation, characterization and photocatalytic activity of TiO2-ZrO2 binary oxide nanoparticles. Appl Catal B 115–116:149–158

    Article  Google Scholar 

  33. Cheng JB, Li AD, Shao QY, Ling HQ, Wu D, Wang Y, Bao YJ, Wang M, Liu ZG, Ming NB (2004) Growth and characteristics of La2O3 gate dielectric prepared by low pressure metalorganic chemical vapor deposition. Appl Surf Sci 233:91–98

    Article  CAS  Google Scholar 

  34. Lopes OF, Paris EC, Ribeiro C (2014) Synthesis of Nb2O5 nanoparticles through the oxidant peroxide method applied to organic pollutant photodegradation: a mechanistic study. Appl Catal B 144:800–808

    Article  CAS  Google Scholar 

  35. Salinas D, Sepúlveda C, Escalona N, GFierro JL, Pecchi G (2018) Sol-gel La2O3-ZrO2 mixed oxide catalysts for biodiesel production. J Energy Chem 27:565–572

    Article  Google Scholar 

  36. Wang Z, Wang L, Jiang Y, Hunger M, Huang J (2014) Cooperativity of Brønsted and Lewis acid sites on zeolite for glycerol dehydration. ACS Catal 4:1144–1147

    Article  CAS  Google Scholar 

  37. Masih D, Rohani S, Kondo JN, Tatsumi T (2019) Catalytic dehydration of ethanol-to-ethylene over Rho zeolite under mild reaction conditions. Micropor Mesopor Mater 282:91–99

    Article  CAS  Google Scholar 

  38. Song Y, Xu S, Ling F, Tian P, Ye T, Yu D, Chu X, Lin Y, Yang X, Tang J (2017) Atomic layer deposition of aluminium on anatase: a solid acid catalyst with remarkable performances for alcohol dehydration. Catal Commun 99:34–38

    Article  CAS  Google Scholar 

  39. Habib E, Wang R, Wang Z, Zhu M, Zhu XX (2016b) Inorganic Fillers for dental resin composites: Present and Future. ACS Biomater Sci Eng 2:1–11

    Article  CAS  Google Scholar 

  40. Utech S, Boccaccini AR (2016) A review of hydrogel-based composites for biomedical application: enhancement of hydrogel properties by addition of rigid inorganic fillers. J Mater Sci 51:271–310

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank CAPES (grants 024/2012 and 011/2009 Pro-equipment), FAPESP Grants 2017/08820-8, 2018/03460-6 and 2019/11493-4 São Paulo Research Foundation (FAPESP), and CNPq (grant 301857/2018-0) for financial support. The authors also thank Arthur Rossi de Oliveira for initiating the experiments.

Funding

CAPES (grants 024/2012 and 011/2009 Pro-equipment), São Paulo Research Foundation -FAPESP (Grants 2017/08820–8, 2019/11493–4 and 2018/03460–6), and CNPq (grant 301857/2018–0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilbert Bannach.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benites, A.B., Alarcon, R.T., Gaglieri, C. et al. Effect of metal oxide fillers in urethane dimethacrylate polymer with glycerol obtained by photopolymerization synthesis. J Polym Res 27, 311 (2020). https://doi.org/10.1007/s10965-020-02292-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02292-1

Keywords

Navigation