Skip to main content
Log in

Functionalized carbon dot nanoparticles reinforced soy protein isolate biopolymeric film

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Amine and carboxyl functionalized carbon dots (CDs), i.e., citric acid polyethylenimine (CPI) and citric acid glycine (CCG) at different contents (0.05 to 0.5% w/w with respect to soy protein isolate (SPI)) were incorporated in glycerol plasticized SPI to produce CDs reinforced SPI films. Functionalized CDs were characterized by fluorescence spectroscopy and X-ray diffraction (XRD). The CDs reinforced SPI films were structurally, morphologically, and mechanically characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscope (SEM) and mechanical properties, respectively. Water uptake studies were also carried out for CDs reinforced SPI films. The results from FTIR study indicated shifting of amide II band from 1544 to 1530 cm−1 for CPI incorporated SPI and generation of a band at 1741 cm−1 for CCG incorporated SPI indicating unbounded –COOH groups of CCG with SPI. The tensile stress and tensile modulus of CPI, as well as CCG reinforced SPI films increased, indicating reinforcement effect of CDs on SPI film. The maximum tensile stress of 0.5% CPI and 0.15% CCG loaded SPI was nearly 38.03% and 42.85% higher than the maximum tensile stress of neat SPI film. Antibacterial activity of CPI and CCG reinforced SPI films against E. coli and L. monocytogenes were also studied but CCG and CPI incorporated SPI films did not show any inhibitory effect on above mentioned bacteria. This work will be helpful in fabricating functionalized CDs reinforced SPI film from the renewable resources with low water uptake and good mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yin GZ, Yang XM (2020) Biodegradable polymers: a cure for the planet, but a long way to go. J Polym Res 27:38

    Article  CAS  Google Scholar 

  2. Jagadeesh D, Reddy DJP, Rajulu AV (2011) Preparation, and properties of biodegradable films from wheat protein isolate. J Polym Environ 19:248–253

    Article  CAS  Google Scholar 

  3. Ma ZS, Liu DG, Zhu Y, Li ZH, Li ZX, Tian HF, Liu HQ (2016) Graphene oxide/chitin nanofibril composite foams as column adsorbents for aqueous pollutants. Carbohydr Polym 144:230–237

    Article  CAS  Google Scholar 

  4. Qu L, Chen G, Dong S, Huo Y, Yin Z, Li S, Chen Y (2019) Improved mechanical and antimicrobial properties of zein/chitosan films by adding highly dispersed nano-TiO2. Ind Crops Prod 130:450–458

    Article  CAS  Google Scholar 

  5. Muthulakshmi L, Rajini N, Nellaiah H, Kathiresan T, Jawaid M, Rajulu AV (2017) Preparation and properties of cellulose nanocomposite films with in situ generated copper nanoparticles using Terminalia catappa leaf extract. Int J Biol Macromol 95:1064–1071

    Article  CAS  Google Scholar 

  6. Tian H, Guo G, Fu X, Yao Y, Yuan L, Xiang A (2018) Fabrication, properties and applications of soy-protein-based materials: a review. Int J Biol Macromol 120:475–490

    Article  CAS  Google Scholar 

  7. Mkandawire M, Aryee AN (2018) Resurfacing and modernization of edible packaging material technology. Curr Opin Food Sci 19:104–112

    Article  Google Scholar 

  8. Zhao Y, He M, Zhao L, Wang S, Li Y, Gan L, Li M, Xu L, Chang PR, Anderson DP, Chen Y (2016) Epichlorohydrin-Cross-linked hydroxyethyl cellulose/soy protein isolate composite films as biocompatible and biodegradable implants for tissue engineering. Appl Mater Interfaces 8:2781–2795

    Article  CAS  Google Scholar 

  9. Wang L, Li J, Zhang S, Shi J (2016) Preparation and characterization of all-biomass soy protein isolate-based films enhanced by epoxy castor oil acid sodium and hydroxypropyl cellulose. Materials 9:193

    Article  Google Scholar 

  10. Saenghirunwattana P, Noomhorm A, Rungsardthong V (2014) Mechanical properties of soy protein based “green” composites reinforced with surface modified cornhusk fiber. Ind Crops Prod 60:44–150

    Article  Google Scholar 

  11. Liu F, Zou HL, Hu JW, Liu HB, Peng JB, Chen YW, Lu FH, Huo YP (2016) Fast removal of methylene blue from aqueous solution using porous soy protein isolate based composite beads. Chem Eng J 287:410–418

    Article  CAS  Google Scholar 

  12. Souzandeh H, Johnson KS, Wang Y, Bhamidipaty K, Zhong WH (2016) Soy- protein based nanofabrics for highly efficient and multifunctional air filtration. Appl Mater Interfaces 8(31):20023–20031

    Article  CAS  Google Scholar 

  13. Tian H, Fu X, Zheng M, Wang Y, Li Y, Xiang A, Zhong WH (2018) Natural polypeptides treat pollution complex: Moisture-resistant multi-functional protein nanofabrics for sustainable air filtration. Nano Res 11(8):4265–4277

    Article  CAS  Google Scholar 

  14. Tunc S, Duman O, Polat TG (2016) Effects of montmorillonite on properties of methyl cellulose/carvacrol based active antimicrobial nanocomposites. Carbohydr Polym 150:259–268

    Article  CAS  Google Scholar 

  15. Tunç S, Duman O (2011) Preparation of active antimicrobial methyl cellulose/carvacrol/montmorillonitenanocomposite films and investigation of carvacrol release. LWT-Food Sci Technol 44(2):465–472

    Article  Google Scholar 

  16. Tunç S, Duman O (2010) Preparation and characterization of biodegradable methyl cellulose/montmorillonite nanocomposite films. Appl Clay Sci 48(3):414–424

    Article  Google Scholar 

  17. Guo G, Tian H, Wu Q (2019) Nanoclay incorporation into soy protein/polyvinyl alcohol blends to enhance the mechanical and barrier properties. Polym Compos 40:3768–3776

    Article  CAS  Google Scholar 

  18. Li Y, Chen H, Dong YM, Li K, Li L, Li JZ (2016) Carbon nanoparticles/soy protein isolate bio-films with excellent mechanical and water barrier properties. Ind Crop Prod 82:133–140

    Article  CAS  Google Scholar 

  19. Han YY, Wang LJ (2016) Improved water barrier and mechanical properties of soy protein isolate films by incorporation of SiO2 nanoparticles. RSC Adv 6(113):112317–112324

    Article  CAS  Google Scholar 

  20. Rani S, Kumar R (2019) A review on material and antimicrobial properties of soy protein isolate film. J Polym Environ 27(8):1–16

    Article  Google Scholar 

  21. Xiang A, Guo G, Tian H (2017) Fabrication and properties of acid treated carbon nanotubes reinforced soy protein nanocomposites. J Polym Environ 25(3):519–525

    Article  CAS  Google Scholar 

  22. Huang J, Zhang L, Chen P (2003) Effects of lignin as a filler on properties of soy protein plastics II Alkaline lignin. J Appl Polym Sci 88(14):3291–3297

    Article  CAS  Google Scholar 

  23. Chen P, Zhang L (2006) Interaction and properties of highly exfoliated soy protein/montmorillonite nanocomposites. Biomacromol 7(6):1700–1706

    Article  CAS  Google Scholar 

  24. Yu J, Cui G, Wei M, Huang J (2007) Facile exfoliation of rectoritenanoplatelets in soy protein matrix and reinforced bionanocomposites thereof. J Appl Polym Sci 104(5):3367–3377

    Article  CAS  Google Scholar 

  25. Kumar R, Anjum KA, Rani S, Sharma K, Tiwary KP, Kumar KD (2019) Material properties of ZnS nanoparticlesincorporated soy protein isolate biopolymeric film. Plast Rubb Compos 48(10):448–455

    Article  CAS  Google Scholar 

  26. Xie WY, Song F, Wang XL, Wang YZ (2016) Development of copper phosphate nanoflowers on soy protein toward a superhydrophobic and self-cleaning film. ACS Sustain Chem Eng 5(1):869–875

    Article  Google Scholar 

  27. Tian H, Xu G (2011) Processing and characterization of glycerol-plasticized soy protein plastics reinforced with citric acid-modified starch nanoparticles. J Polym Environ 19(3):582–588

    Article  CAS  Google Scholar 

  28. Lim SY, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44:362–368

    Article  CAS  Google Scholar 

  29. Yang Z, Li Z, Xu M, Ma Y, Zhang J, Su Y, Gao F, Wei H, Zhang L (2013) Controllable synthesis of fluorescent carbon dots and their detection application as nanoprobes. Nanomicro Lett 5:247–259

    Google Scholar 

  30. Zhou Y, Sharma SK, Peng Z, Leblanc RM (2017) Polymers in carbon dots: A review. Polymers (Basel) 9:67

    Article  Google Scholar 

  31. Ganguly S, Das P, Banerjee S, Das NC (2019) Advancement in science and technology of carbon dot-polymer hybrid composites: A review. Funct Compos Struct 1:022001

    Article  Google Scholar 

  32. Duarah R, Karak N (2019) hyperbranched polyurethane/palladium-reduced carbon dot nanocomposite: an efficient and reusable mesoporous catalyst for visible-light-driven C-C coupling reactions. Ind Eng Chem Res 58:16307–16319

    Article  CAS  Google Scholar 

  33. Kumari S, Solanki A, Mandal S, Subramanyam D, Das P (2018) Creation of linear carbon dot array with improved optical properties through controlled covalent conjugation with DNA. Bioconjugate Chem 29(5):1500–1504

    Article  CAS  Google Scholar 

  34. Sreenath PR, Singh S, Satyanarayana MS, Das P, Kumar KD (2017) Carbon dot–Unique reinforcing filler for polymer with special reference to physico-mechanical properties. Polymer 112:189–200

    Article  CAS  Google Scholar 

  35. Mandal S, Das P (2019) Ultrasensitive visual detection of mycotoxin citrinin with yellow-light emitting carbon dot and congo red. Food Chem 312:126076

    Article  Google Scholar 

  36. Lu Y, Weng L, Zhang L (2004) Morphology and properties of soy protein isolate thermoplastics reinforced with chitin whiskers. Biomacromol 5:1046–1051

    Article  CAS  Google Scholar 

  37. Chung YJ, Kim J, Park CB (2020) Photonic carbon dots as an emerging nanoagent for biomedical and healthcare applications. ACS Nano 14:6470–6497

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, S., Kumar, K.D., Mandal, S. et al. Functionalized carbon dot nanoparticles reinforced soy protein isolate biopolymeric film. J Polym Res 27, 312 (2020). https://doi.org/10.1007/s10965-020-02276-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02276-1

Keyword

Navigation