Skip to main content
Log in

Soluble ethane-bridged silsesquioxane polymer by hydrolysis–condensation of bis(trimethoxysilyl)ethane: characterization and mixing in organic polymers

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Gel structure of ethane-bridged trialkoxysilsesquioxane has been investigated extensively. In contrast, only a few studies have focused on the characterization of soluble ethane-bridged silsesquioxane polymer (sEBSP) because of difficult preparation and isolation processes. The present study aims to characterize the sEBSP and investigate its mixing effect in an organic polymer. The sEBSP was prepared by the hydrolysis–condensation of bis(trimethoxysilyl)ethane under a nitrogen flow and characterized by nuclear magnetic resonance spectroscopy (NMR), Fourier-transform infrared (FTIR) spectroscopy, and gel permeation chromatography (GPC). Based on the NMR and FTIR results, sEBSP was characterized as a randomly structured polymer with hybridized linear, cyclic, branched, and bicyclic units. It was mixed with poly(methyl methacrylate) (PMMA) and poly(bisphenol A-co-epichlorohydrin) (PBE) to form PMMA–sEBSP and PBE–sEBSP, respectively, which were then characterized by FTIR spectroscopy. The results confirmed the formation of hydrogen bonds between sEBSP and the organic polymer. The thermal stabilities of PMMA–sEBSP were better than those of the pure polymers. PBE–sEBSP exhibited a lower 5% weight loss temperature (Td5) because of the transalkoxylation between PBE and sEBSP. The miscibility of organic polymers and sEBSP was confirmed by differential scanning calorimetry (DSC). Based on their glass transition temperature, PMMA–sEBSP and PBE–sEBSP were classified as a hybrid and nanocomposite, respectively. Therefore, sEBSP was miscible to PMMA and PBE and affected to thermal properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Waki M, Mizoshita N, Ohsuna T, Tani T, Inagaki S (2010) Crystal-like periodic mesoporous organosilica bearing pyridine units within the framework. Chem Commun 46:8163–8165. https://doi.org/10.1039/C0CC01944E

    Article  CAS  Google Scholar 

  2. Yamamoto K, Ohshita J (2019) Bridged polysilsesquioxane membranes for water desalination. Polym J 51:1103–1116. https://doi.org/10.1038/s41428-019-0237-9

    Article  CAS  Google Scholar 

  3. Ren X, Tsuru T (2019) Organosilica-based membranes in gas and liquid-phase separation. Membranes 9:107. https://doi.org/10.3390/membranes9090107

    Article  CAS  PubMed Central  Google Scholar 

  4. Aoki Y, Shimizu T, Kanamori K, Maeno A, Kaji H, Nakanishi K (2017) Low-density, transparent aerogels and xerogels based on hexylene-bridged polysilsesquioxane with bendability. J Sol-Gel Sci Technol 81:42–51. https://doi.org/10.1007/s10971-016-4077-1

    Article  CAS  Google Scholar 

  5. Sainohira Y, Fujino K, Shimojima A, Kuroda K, Kaneko Y (2019) Preparation of CO2-adsorbable amine-functionalized polysilsesquioxanes containing cross-linked structures without using surfactants and strong acid or base catalysts. J Sol-Gel Sci Technol 91:505–513. https://doi.org/10.1007/s10971-019-05072-6

    Article  CAS  Google Scholar 

  6. Liu N, Yu K, Smarsly B, Dunphy DR, Jiang YB, Brinker CJ (2002) Self-directed assembly of photoactive hybrid silicates derived from azobenzene-bridged silsesquoxane. J Am Chem Soc 124:14540–14541. https://doi.org/10.1021/ja027991w

    Article  CAS  PubMed  Google Scholar 

  7. Shea KJ, Loy DA (2001a) Bridged polysilsesquioxanes. Molecular-engineered hybrid organic–inorganic materials. Chem Mater 13:3306–3319. https://doi.org/10.1021/cm011074s

    Article  CAS  Google Scholar 

  8. Shea KJ, Loy DA (2001b) A mechanistic investigation of gelation. The sol–gel polymerization of precursors to bridged polysilsesquioxanes. Acc Chem Res 34:707–716. https://doi.org/10.1021/ar000109b

    Article  CAS  PubMed  Google Scholar 

  9. Kuge H, Hagiwara Y, Shimojima A, Kuroda K (2008) Oligomeric alkoxysilanes with cagelike hybrids as cores: designed precursors of nanohybrid materials. Chem Asian J 3:600–606. https://doi.org/10.1002/asia.200700242

    Article  CAS  PubMed  Google Scholar 

  10. Loy DA, Carpenter JP, Alam TM, Shaltout R, Dorhout PK, Greaves J, Small JH, Shea KJ (1999) Cyclization phenomena in the sol–gel polymerization of α,ω-bis(triethoxysilyl)alkanes and incorporation of the cyclic structures into network silsesquioxane polymers. J Am Chem Soc 121:5413–5425. https://doi.org/10.1021/ja982751v

    Article  CAS  Google Scholar 

  11. Yamamoto K, Ohshita J, Mizumo T, Tsuru T (2014) Polymerization behavior and gel properties of ethane, ethylene and acetylene-bridged polysilsesquioxanes. J Sol-Gel Sci Technol 71:24–30. https://doi.org/10.1007/s10971-014-3322-8

    Article  CAS  Google Scholar 

  12. Gunji T, Hayashi Y, Komatsubara A, Arimitsu K, Abe Y (2012) Preparation and properties of flexible free-standing films via polyalkoxysiloxanes by acid-catalyzed controlled hydrolytic polycondensation of tetraethoxysilane and tetramethoxysilane. Appl Organomet Chem 26:32–36. https://doi.org/10.1002/aoc.1861

    Article  CAS  Google Scholar 

  13. Gunji T, Iizuka Y, Arimitsu K, Abe Y (2004) Preparation and properties of alkoxy(methyl)silsesquioxanes as coating agents. J Polym Sci A: Polym Chem 42:3676–3684. https://doi.org/10.1002/pola.20233

    Article  CAS  Google Scholar 

  14. Wang Z, Wang D, Qian Z, Guo J, Dong H, Zhao N, Xu J (2015) Robust superhydrophobic bridged silsesquioxane aerogels with tunable performances and their applications. ACS Appl Mater Interfaces 7:2016–2024. https://doi.org/10.1021/am5077765

    Article  CAS  PubMed  Google Scholar 

  15. Chiang CL, Ma CCM, Wu DL, Kuan HC (2003) Preparation, characterization, and properties of novolac-type phenolic/SiO2 hybrid organic–inorganic nanocomposite materials by sol–gel method. J Polym Sci A Polym Chem 41:905–913. https://doi.org/10.1002/pola.10624

    Article  CAS  Google Scholar 

  16. Arkhireeva A, Hay JN, Lane JM, Manzano M, Masters H, Oware W, Shaw SJ (2004) Synthesis of organic-inorganic hybrid particles by sol-gel chemistry. J Sol-Gel Sci Technol 31:31–36. https://doi.org/10.1023/B:JSST.0000047956.24117.89

    Article  CAS  Google Scholar 

  17. Zhang QG, Liu QL, Zhu AM, Xiong Y, Zhang XH (2008) Characterization and permeation performance of novel organic–inorganic hybrid membranes of poly(vinyl alcohol)/1,2-bis(triethoxysilyl)ethane. J Phys Chem B 112:16559–16565. https://doi.org/10.1021/jp807573g

    Article  CAS  PubMed  Google Scholar 

  18. Tanaka K, Adachi S, Chujo Y (2009) Structure–property relationship of octa-substituted POSS in thermal and mechanical reinforcements of conventional polymers. J Polym Sci A: Polym Chem 47:5690–5697. https://doi.org/10.1002/pola.23612

    Article  CAS  Google Scholar 

  19. Mohamed MG, Kuo SW (2019a) Functional polyimide/polyhedral oligomeric silsesquioxane nanocomposites Polymers 11:26. https://doi.org/10.3390/polym11010026

    Article  CAS  Google Scholar 

  20. Mohamed MG, Kuo SW (2019b) Functional silica and carbon nanocomposites based on polybenzoxazines. Macromol Chem Phys 220:1800306. https://doi.org/10.1002/macp.201800306

    Article  CAS  Google Scholar 

  21. Sato Y, Hayami R, Miyase Y, Yamamoto K, Gunji T (2020) Preparation and properties of methyl- and cyclohexyl-silsesquoxane oligomers as organic–inorganic fillers. J Sol-Gel Sci Technol 95:474–481. https://doi.org/10.1007/s10971-020-05291-2

    Article  CAS  Google Scholar 

  22. Abe Y, Gunji T (2004) Oligo- and polysiloxanes. Prog Polym Sci 29:149–182. https://doi.org/10.1016/j.progpolymsci.2003.08.003

    Article  CAS  Google Scholar 

  23. Hayami R, Nishikawa I, Hisa T, Nakashima H, Sato Y, Ideno Y, Sagawa T, Tsukada S, Yamamoto K, Gunji T (2018) Preparation and characterization of stable DQ silicone polymer sols. J Sol-Gel Sci Technol 88:660–670. https://doi.org/10.1007/s10971-018-4839-z

    Article  CAS  Google Scholar 

  24. Hayami R, Izumiya T, Kokaji T, Nakagawa H, Tsukada S, Yamamoto K, Gunji T (2019) 2-Triethoxysilylazulene derivatives: Syntheses and optical properties, and hydrolysis–condensation of 2-triethoxysilylazulene. J Sol-Gel Sci Technol 91:399–406. https://doi.org/10.1007/s10971-019-04991-8

    Article  CAS  Google Scholar 

  25. Guan S, Inagaki S, Ohsuna T, Terasaki O (2001) Hybrid ethane–siloxane mesoporous materials with cubic symmetry. Micropor Mesopor Mater 44–45:165–172. https://doi.org/10.1016/S1387-1811(01)00181-0

    Article  Google Scholar 

  26. Oviatt HW, Shea KJ, Small JH (1993) Alkylene-bridged silsesquioxane sol–gel synthesis and xerogel characterization. Molecular requirements for porosity Chem Mater 5:943–950. https://doi.org/10.1021/cm00031a012

    Article  CAS  Google Scholar 

  27. Wahab MA, Imae I, Kawakami Y, Kim I, Ha CS (2006) Functionalized periodic mesoporous organosilica fibers with longitudinal pore architectures under basic conditions. Micropor Mesopor Mater 92:201–211. https://doi.org/10.1016/j.micromeso.2005.12.016

    Article  CAS  Google Scholar 

  28. Ambati J, Rankin SE (2011) Reaction-induced phase separation of bis(triethoxysilyl)ethane upon sol–gel polymerization in acidic conditions. J Colloid Interface Sci 362:345–353. https://doi.org/10.1016/j.jcis.2011.06.064

    Article  CAS  PubMed  Google Scholar 

  29. Loy DA, Baugher BM, Baugher CR, Schneider DA, Rahimian K (2000) Substituent effects on the sol–gel chemistry of organotrialkoxysilanes. Chem Mater 12:3624–3632. https://doi.org/10.1021/cm000451i

    Article  CAS  Google Scholar 

  30. Depla A, Lesthaeghe D, Van Erp TS, Aerts A, Houthoofd K, Fan F, Li C, Van Speybroeck V, Waroquier M, Kirschhock CEA, Martens JA (2011) 29Si NMR and UV–Raman investigation of initial oligomerization reaction pathways in acid-catalyzed silica sol–gel chemistry. J Phys Chem C 115:3562–3571. https://doi.org/10.1021/jp109901v

    Article  CAS  Google Scholar 

  31. Mazúr M, Mlynárik V, Valko M, Pelikán P (1999) The time evolution of the sol-gel process: 29Si NMR study of hydrolysis and condensation reactions of tetramethoxysilane. Appl Magn Reson 16:547–557. https://doi.org/10.1007/BF03161950

    Article  Google Scholar 

  32. Li YS, Lu W, Wang Y, Tran T (2009) Studies of (3-mercaptopropyl)trimethoxysilane and bis(trimethoxysilyl)ethane sol–gel coating on copper and aluminum. Spectrochim Acta A 73:922–928. https://doi.org/10.1016/j.saa.2009.04.016

    Article  CAS  Google Scholar 

  33. Li YS, Wang Y, Tran T, Perkins A (2005) Vibrational spectroscopic studies of (3-mercaptopropyl)trimethoxysilane sol–gel and its coating. Spectrochim Acta A 61:3032–3037. https://doi.org/10.1016/j.saa.2004.11.031

    Article  CAS  Google Scholar 

  34. Moriyama N, Nagasawa H, Kanezashi M, Ito K, Tsuru T (2018) Bis(triethoxysilyl)ethane (BTESE)-derived silica membranes: pore formation mechanism and gas permeation properties. J Sol-Gel Sci Technol 86:63–72. https://doi.org/10.1007/s10971-018-4618-x

    Article  CAS  Google Scholar 

  35. Rocha MCG, Moraes LRC, Cella N (2017) Thermal and mechanical properties of vinyltrimethoxysilane (VTMOS) crosslinked high molecular weight polyethylene (HMWPE). Mater Res 20:1332–1339. https://doi.org/10.1590/1980-5373-mr-2016-0552

    Article  CAS  Google Scholar 

  36. Chen MA, Lu XB, Guo ZH, Huang R (2011) Influence of hydrolysis time on the structure and corrosion protective performance of (3-mercaptopropyl)triethoxysilane film on copper. Corros Sci 56:2793–2802. https://doi.org/10.1016/j.corsci.2011.05.010

    Article  CAS  Google Scholar 

  37. Park ES, Ro HW, Nguyen CV, Jaffe RL, Yoon DY (2008) Infrared spectroscopy study of microstructures of poly(silsesquioxane)s. Chem Mater 20:1548–1554. https://doi.org/10.1021/cm071575z

    Article  CAS  Google Scholar 

  38. Guo M, Kanezashi M, Nagasawa H, Yu L, Yamamoto K, Gunji T, Ohshita J, Tsuru T (2019) Tailoring the microstructure and permeation properties of bridged organosilica membranes via control of the bond angles. J Membr Sci 584:56–65. https://doi.org/10.1016/j.memsci.2019.04.072

    Article  CAS  Google Scholar 

  39. Capozzi CA, Pye LD, Condrate RA Sr (1992) Vibrational spectral/structural changes from the hydrolysis/polycondensation of methyl-modified silicates. I. comparisons for single monomer condensates. Mater Lett 15:130–136. https://doi.org/10.1016/0167-577X(92)90028-I

    Article  CAS  Google Scholar 

  40. Liang Y, Anwander R (2004) Synthesis of pore-enlarged mesoporous organosilicas under basic conditions. Micropor Mesopor Mater 72:153–165. https://doi.org/10.1016/j.micromeso.2004.03.013

    Article  CAS  Google Scholar 

  41. Newton WE, Rochow EG (1970) Vibrational spectra of some trialkoxysilanes. J Chem Soc A 1970:2664–2668. https://doi.org/10.1039/J19700002664

    Article  Google Scholar 

  42. Tommasini FJ, Ferreira LC, Tienne LGP, Aguiar VO, Silva MHP, Rocha LFM, Marques MFV (2018) Poly(methyl methacrylate)-SiC nanocomposites prepared through in situ polymerization. Mater Res 21:e20180086. https://doi.org/10.1590/1980-5373-mr-2018-0086

    Article  CAS  Google Scholar 

  43. Ismayil RV, Bhajantri RF, Praveena SD, Poojary B, Dutta D, Pujari PK (2010) Optival and microstructural studies on electron irradiated PMMA: A positron annihilation study. Polym Degrad Stab 95:1083–1091. https://doi.org/10.1016/j.polymdegradstab.2010.02.031

    Article  CAS  Google Scholar 

  44. Chan CK, Peng SL, Chu IM, Ni SC (2001) Effects of heat treatment on the properties of poly(methyl methacrylate)/silica hybrid materials prepared by sol–gel process. Polymer 42:4189–4196. https://doi.org/10.1016/S0032-3861(00)00817-X

    Article  CAS  Google Scholar 

  45. Nie B, Stutzman J, Xie A (2005) A vibrational spectral maker for probing the hydrogen-bonding status of protonated Asp and Glu residues. Biophys J 88:2833–2847. https://doi.org/10.1529/biophysj.104.047639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hayami R, Nakamoto W, Sato Y, Yamamoto K, Gunji T (2019) Organic–inorganic hybrids based on poly(bisphenol A-co-epichlorohydrin) containing titanium phosphonate clusters. Polym J 51:1265–1271. https://doi.org/10.1038/s41428-019-0243-y

    Article  CAS  Google Scholar 

  47. Nikolic G, Zlatkovic S, Cakic M, Cakic S, Lacnjevac C, Rajic Z (2010) Fast Fourier transform IR characterization of epoxy GY systems crosslinked with aliphatic and cycloaliphatic EH polyamine adducts. Sensors 10:684–696. https://doi.org/10.3390/s100100684

    Article  CAS  PubMed  Google Scholar 

  48. Kashiwagi D, Inaba A, Brown JE, Hatada K, Kitayama T, Masuda E (1986) Effects of weak linkages on the thermal and oxidative degradation of poly(methyl methacrylates). Macromolecules 19:2160–2168. https://doi.org/10.1021/ma00162a010

    Article  CAS  Google Scholar 

  49. Manring LE (1989) Thermal degradation of poly(methyl methacrylate). 2. Vinyl-terminated polymer Macromolecules 22:2673–2677. https://doi.org/10.1021/ma00196a024

    Article  CAS  Google Scholar 

  50. Peterson JD, Vyazovkin S, Wight CA (1999) Kinetic study of stabilizing effect of oxygen on thermal degradation of poly(methyl methacrylate). J Phys Chem B 103:8087–8092. https://doi.org/10.1021/jp991582d

    Article  CAS  Google Scholar 

  51. Tong Y, Lunsford H (1991) Mechanistic and kinetic studies of the reactions of gas-phase methyl radicals with metal oxides. J Am Chem Soc 113:4741–4746. https://doi.org/10.1021/ja00013a005

    Article  CAS  Google Scholar 

  52. Tanaka K, Yamane H, Mitamura K, Watase S, Matsukawa K, Chujo Y (2014) Transformation of sulfur to organic–inorganic hybrids employed by networks and their application for the modulation of refractive indices. J Polym Sci Part A: Polym Chem 52:2588–2595. https://doi.org/10.1002/pola.27274

    Article  CAS  Google Scholar 

  53. Hayami R, Wada K, Sagawa T, Tsukada S, Watase S, Gunji T (2017) Preparation and properties of organic–inorganic hybrid polymer films using [Ti43-O)(OiPr)5(µ-OiPr)3(PhPO3)3]•thf. Polym J 49:223–228. https://doi.org/10.1038/pj.2016.108

    Article  CAS  Google Scholar 

  54. Hayami R, Wada K, Nishikawa I, Sagawa T, Yamamoto K, Tsukada S, Gunji T (2017) Preparation and properties of organic–inorganic hybrid materials using titanium phosphonate clusters. Polym J 49:665–669. https://doi.org/10.1038/pj.2017.34

    Article  CAS  Google Scholar 

  55. Aid S, Eddhahak A, Ortega Z, Froelich D, Tcharkhtchi A (2017) Experimental study of the miscibility of ABS/PC polymer blends and investigation of the processing effect. J Appl Polym Sci 134:44975. https://doi.org/10.1002/app.44975

    Article  CAS  Google Scholar 

  56. Mammeri F, Bourhis EL, Rozes L, Sanchez C (2005) Mechanical properties of hybrid organic–inorganic materials. J Mater Chem 15:3787–3811. https://doi.org/10.1039/B507309J

    Article  CAS  Google Scholar 

  57. Džunuzović E, Marinović-Cincović M, Vuković J, Jeremić K, Nedelijković JM (2009) Thermal properties of PMMA/TiO2 nanocomposites prepared by in-situ bulk polymerization. Polym Composites 30:737–742. https://doi.org/10.1002/pc.20606

    Article  CAS  Google Scholar 

  58. Thomas P, Ernest Ravindran RS, Varma KBR (2014) Structural, thermal and electrical properties of poly(methyl methacrylate)/CaCu3Ti4O12 composite sheets fabricated via melt mixing. J Therm Anal Calorim 115:1311–1319. https://doi.org/10.1007/s10973-013-3500-x

    Article  CAS  Google Scholar 

  59. Džunuzović E, Jeremić K, Nedelijković JM (2007) In situ radical polymerization of methyl methacrylate in a solution of surface modified TiO2 and nanoparticles. Eur Polym J 43:3719–3726. https://doi.org/10.1016/j.eurpolymj.2007.06.026

    Article  CAS  Google Scholar 

  60. Varzeghani HN, Amraei IA, Mousavi SR (2020) Dynamic cure kinetics and physical-mechanical properties of PEG/nanosilica/epoxy composites. Int J Polym Sci 2020:7908343. https://doi.org/10.1155/2020/7908343

    Article  CAS  Google Scholar 

  61. Hayami R, Wada K, Miyase Y, Sagawa T, Tsukada S, Yamamoto K, Gunji T (2018) Properties and surface morphologies of organic–inorganic hybrid thin films containing titanium phosphonate clusters. Polym J 50:1169–1177. https://doi.org/10.1038/s41428-018-0108-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers JP18K14287 and JP19K05636.

Author information

Authors and Affiliations

Authors

Contributions

RH wrote original draft and performed the acquisition and analysis of data. YI performed the preparation and measurement of silsesquioxane polymer and composites (in original manuscript). YS prepared silsesquioxane polymer (in original and revised) and measured silsesquioxane polymer (in revised). HT performed the preparation and measurement of composites (in revised). KY was supervision. TG wrote for review and was supervision. KY and TG were funding acquisition.

Corresponding author

Correspondence to Takahiro Gunji.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10965_2020_2294_MOESM1_ESM.docx

Supplementary file1 (DOCX 179 kb)1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayami, R., Ideno, Y., Sato, Y. et al. Soluble ethane-bridged silsesquioxane polymer by hydrolysis–condensation of bis(trimethoxysilyl)ethane: characterization and mixing in organic polymers. J Polym Res 27, 316 (2020). https://doi.org/10.1007/s10965-020-02294-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02294-z

Keywords

Navigation