Skip to main content

Advertisement

Log in

Realization of Precise Tuning the Superconducting Properties of Mn-Doped Al Films for Transition Edge Sensors

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Magnetic impurities in metallic superconductors are important for both fundamental and applied sciences. In this study, we focused on dilute Mn-doped aluminum (AlMn) films, which are common superconducting materials used to make transition edge sensors and other superconducting devices. We developed a multi-energy ion-implantation technique to make AlMn films. Compared with frequently used sputtering techniques, ion-implantation provides more precise control of the Mn doping concentration in the AlMn films. It enables us to fabricate reliably AlMn films with a different superconducting transition temperature (Tc) that can match a variety of application needs. We also found that the superconducting transition temperature drops with increasing film thickness for samples with the same nominal concentration of Mn dopants. The dependence of Tc on the film thickness is attributed to the increasing implantation energy. By quantitatively analyzing the curves of Tc versus the Mn doping concentration, we propose that Mn dopants act as magnetic impurities and suppression of superconductivity is counteracted by the antiferromagnetic Ruderman–Kittel–Kasuya–Yosida interaction among Mn dopants, which is influenced by the defects induced in the ion-implantation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Reference:s

  1. P.W. Anderson, Phys. Rev. 124, 41 (1961)

    ADS  MathSciNet  Google Scholar 

  2. L.P.G.A. Abrikosov, Sov. Phys. JETP 12, 1243 (1961)

    Google Scholar 

  3. P. Fulde, K. Maki, Phys. Rev. 141, 275 (1966)

    ADS  Google Scholar 

  4. A.B. Kaiser, J. Phys. C: Solid State Phys. 3, 410 (1970)

    ADS  Google Scholar 

  5. G.B. Arnold, Phys. Rev. B 10, 105 (1974)

    ADS  Google Scholar 

  6. W.A. Roshen, J. Ruvalds, Phys. Rev. B 31, 2929 (1985)

    ADS  Google Scholar 

  7. D. Guenzburger, D.E. Ellis, Phys. Rev. Lett. 67, 3832 (1991)

    ADS  Google Scholar 

  8. D. Guenzburger, D.E. Ellis, Phys. Rev. B 49, 6004 (1994)

    ADS  Google Scholar 

  9. A. Lamacraft, B.D. Simons, Phys. Rev. B 64, 014514 (2001)

    ADS  Google Scholar 

  10. S.W. Deiker et al., Appl. Phys. Lett. 85, 2137 (2004)

    ADS  Google Scholar 

  11. G. O’Neil, D. Schmidt, N.A. Miller, J.N. Ullom, A. Williams, G.B. Arnold, S.T. Ruggiero, Phys. Rev. Lett. 100, 056804 (2008)

    ADS  Google Scholar 

  12. N.Y. Yao, L.I. Glazman, E.A. Demler, M.D. Lukin, J.D. Sau, Phys. Rev. Lett. 113, 087202 (2014)

    ADS  Google Scholar 

  13. C. Grezes et al., C R Phys. 17, 693 (2016)

    ADS  Google Scholar 

  14. M. Niwata, R. Masutomi, T. Okamoto, Phys. Rev. Lett. 119, 257001 (2017)

    ADS  Google Scholar 

  15. B.W. Heinrich, J.I. Pascual, K.J. Franke, Prog. Surf. Sci. 93, 1 (2018)

    ADS  Google Scholar 

  16. K. Akkaravarawong, J.I. Väyrynen, J.D. Sau, E.A. Demler, L.I. Glazman, N.Y. Yao, Phys. Rev. Res. 1, 033091 (2019)

    Google Scholar 

  17. K. Jiang, X. Dai, Z. Wang, Phys. Rev. X 9, 011033 (2019)

    Google Scholar 

  18. S. Kezilebieke, R. Žitko, M. Dvorak, T. Ojanen, P. Liljeroth, Nano Lett. 19, 4614 (2019)

    ADS  Google Scholar 

  19. R. Wang, W. Su, J.-X. Zhu, C.S. Ting, H. Li, C. Chen, B. Wang, X. Wang, Phys. Rev. Lett. 122, 087001 (2019)

    ADS  Google Scholar 

  20. J.-X. Yin et al., Phys. Rev. Lett. 123, 217004 (2019)

    ADS  Google Scholar 

  21. J. Hubmayr et al., IEEE Trans. Appl. Supercond. 21, 203 (2011)

    ADS  Google Scholar 

  22. D.R. Schmidt et al., IEEE Trans. Appl. Supercond. 21, 196 (2011)

    ADS  Google Scholar 

  23. E.M. George et al., J. Low Temp. Phys. 176, 383 (2014)

    ADS  Google Scholar 

  24. D. Li et al., J. Low Temp. Phys. 184, 66 (2016)

    ADS  Google Scholar 

  25. E.M. Vavagiakis et al., J. Low Temp. Phys. 193, 288 (2018)

    ADS  Google Scholar 

  26. E.M. Vavagiakis, N.F. Cothard, J.R. Stevens, C.L. Chang, M.D. Niemack, G. Wang, V.G. Yefremenko, J. Zhang, J. Low Temp. Phys. 199, 408 (2019)

    ADS  Google Scholar 

  27. S.M. Duff et al., J. Low Temp. Phys. 184, 634 (2016)

    ADS  Google Scholar 

  28. G. Jones et al., Appl. Phys. Lett. 110, 222601 (2017)

    ADS  Google Scholar 

  29. P.J. Lowell, J.A.B. Mates, W.B. Doriese, G.C. Hilton, K.M. Morgan, D.S. Swetz, J.N. Ullom, D.R. Schmidt, Appl. Phys. Lett. 109, 142601 (2016)

    ADS  Google Scholar 

  30. J.C. Weber et al., Appl. Phys. Lett. 114, 232602 (2019)

    ADS  Google Scholar 

  31. S.T. Ruggiero, A. Williams, W.H. Rippard, A.M. Clark, S.W. Deiker, B.A. Young, L.R. Vale, J.N. Ullom, Nuclear instruments and methods in physics research section A: accelerators. Spectrom. Detect. Assoc. Equip. 520, 274 (2004)

    Google Scholar 

  32. S.T. Ruggiero, G.B. Arnold, A. Williams, A.M. Clark, N.A. Miller, J.N. Ullom, IEEE Trans. Appl. Supercond. 15, 125 (2005)

    ADS  Google Scholar 

  33. L.J. Taskinen, I.J. Maasilta, Appl. Phys. Lett. 89, 143511 (2006)

    ADS  Google Scholar 

  34. X. Ou, P.D. Kanungo, R. Kogler, P. Werner, U. Gosele, W. Skorupa, X. Wang, Nano Lett. 10, 171 (2010)

    ADS  Google Scholar 

  35. X. Ou, A. Keller, M. Helm, J. Fassbender, S. Facsko, Phys. Rev. Lett. 111, 016101 (2013)

    ADS  Google Scholar 

  36. S. Zhao, D.J. Goldie, C.N. Thomas, S. Withington, Supercond. Sci. Technol. 31, 085012 (2018)

    ADS  Google Scholar 

  37. S. Zhou, J. Phys. D Appl. Phys. 48, 395303 (2015)

    Google Scholar 

  38. N. Teranishi, G. Fuse, M. Sugitani, Sensors (Basel) 18, 2358 (2018)

    Google Scholar 

  39. W. Zhang, Q. Jia, L. You, X. Ou, H. Huang, L. Zhang, H. Li, Z. Wang, X. Xie, Phys. Rev. Appl. 12, 044040 (2019)

    ADS  Google Scholar 

  40. B.A. Young, T. Saab, B. Cabrera, J.J. Cross, R.M. Clarke, R.A. Abusaidi, J. Appl. Phys. 86, 6975 (1999)

    ADS  Google Scholar 

  41. B.A. Young, T. Saab, B. Cabrera, J.J. Cross, R.A. Abusaidi, Nuclear Instruments and Methods in Physics Research Section A: Accelerators. Spectrom. Detect. Assoc. Equip. 444, 296 (2000)

    Google Scholar 

  42. B.A. Young, T. Saab, B. Cabrera, A.J. Miller, P.L. Brink, J.P. Castle, J. Appl. Phys. 91, 6516 (2002)

    ADS  Google Scholar 

  43. B.A. Young, J.R. Williams, S.W. Deiker, S.T. Ruggiero, B. Cabrera, Nuclear Instruments and methods in physics research section A: accelerators. Spectrom. Detect. Assoc. Equip. 520, 307 (2004)

    Google Scholar 

  44. P. Jalkanen, V. Tuboltsev, A. Virtanen, K. Arutyunov, J. Räisänen, O. Lebedev, G. Van Tendeloo, Solid State Commun. 142, 407 (2007)

    ADS  Google Scholar 

  45. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Methods Phys. Res. Sect. B 268, 1818 (2010)

    ADS  Google Scholar 

  46. G. O'Neil, D. Schmidt, N.A. Miller, J.N. Ullom, A. Williams, G.B. Arnold, S.T. Ruggiero, Phys. Rev. Lett. 100, 056804 (2008)

    ADS  Google Scholar 

  47. S.T. Ruggiero, A. Williams, W.H. Rippard, A.M. Clark, S.W. Deiker, B.A. Young, L.R. Vale, J.N. Ullom, Nucl. Instrum. Meth. A 520, 274 (2004)

    ADS  Google Scholar 

  48. J. Chang, J.-Y. Cho, C.-S. Gil, W.-J. Lee, Nucl. Eng. Technol. 46, 475 (2014)

    Google Scholar 

  49. R. Hijmering et al., IEEE Trans. Appl. Supercond. 23, 2101505 (2013)

    ADS  Google Scholar 

  50. W.B. Doriese et al., Rev Sci Instrum 88, 053108 (2017)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China under Grant No. 2017YFA0304000, by the Chinese National Science Foundation under Grant Nos. 11653004, 11705262, 61874128, 61851406, U1732268 and U1632272, by Frontier Science Key Program of CAS (No. QYZDY-SSW-JSC032) and by Program of Shanghai Academic Research Leader (No. 19XD1404600). The nanofabrication work is supported by the superconducting electronics facility (SELF) of Shanghai institute of microsystem and information technology. We thank Wentao Wu, Hubing Wang and Qi Jia for their assistance in the experiments. We thank Jiaxing Ding from Shanghai Jiaotong University for her support in the SIMS measurements and data analysis. We thank Helmholtz-Zentrum Dresden-Rossendorf (HZDR) for the implantation work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Ou or Bo Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 616 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Y., Huang, H., You, T. et al. Realization of Precise Tuning the Superconducting Properties of Mn-Doped Al Films for Transition Edge Sensors. J Low Temp Phys 202, 71–82 (2021). https://doi.org/10.1007/s10909-020-02534-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02534-y

Keywords

Navigation