Skip to main content
Log in

Magnetic and Thermodynamic Properties of a Nanowire with Rashba Spin–Orbit Interaction

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In this work, we have considered ballistic nanowires in the presence of gate-controlled Rashba spin–orbit interaction and an in-plane magnetic field. First, the energy expression of the nanowires was obtained. Then, the analytical relations for the mean energy, free energy, specific heat, entropy and magnetic susceptibility of the system were derived. It is found that the specific heat and magnetic susceptibility show peak structure in the presence of spin–orbit and magnetic field. The peak position of specific heat depends on the Rashba constant, Zeeman splitting parameter and the angle between magnetic field and the wire axis (θ). The peak of magnetic susceptibility disappears with increasing magnetic field and decreasing θ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P. Harrison, Quantum Wells, Wires and Dots, 2nd edn. (Wiley, Chichester, 2005)

    Google Scholar 

  2. R. Khordad, Eur. Phys. J. B 78, 399 (2010)

    ADS  Google Scholar 

  3. H.R. Rastegar Sedehi, Eur. Phys. J. B 93, 14 (2020)

    ADS  MathSciNet  Google Scholar 

  4. R. Khordad, B. Mirhosseini, M.M. Mirhosseini, J. Low Temp. Phys. 197, 95 (2019)

    ADS  Google Scholar 

  5. M. Wierzbicki, Phys. E 87, 220 (2017)

    Google Scholar 

  6. S.A. Kharbach, J. Rezzouk, M.O. Jamil, Superlattices Microstruct. 104, 93 (2017)

    ADS  Google Scholar 

  7. M. Tshipa, Cond. Matt. Phys. 20, 23703 (2017)

    Google Scholar 

  8. M.R. Sakr, Phys. E 64, 68 (2014)

    Google Scholar 

  9. Y.V. Pershin, J.A. Nesteroff, V. Privman, Phys. Rev. B 69, 121306 (2004)

    ADS  Google Scholar 

  10. R. Srouji, M.R. Sakr, Phys. E 68, 210 (2015)

    Google Scholar 

  11. R. Khordad, J. Mag. Mag. Mater. 449, 510 (2018)

    ADS  Google Scholar 

  12. R. Khordad, B. Vaseghi, Int. J. Quant. Chem. 119, e25994 (2019)

    Google Scholar 

  13. L. Serra, D. Sänchez, R. Löpez, Phys. Rev. B 72, 235309 (2005)

    ADS  Google Scholar 

  14. M.R. Sakr, Phys. Lett. A 380, 3206 (2016)

    ADS  Google Scholar 

  15. S.I. Erlingsson, J.C. Egues, D. Loss, Phys. Rev. B 82, 155456 (2010)

    ADS  Google Scholar 

  16. H. Hassanabadi, H. Rahimov, L. Lu, C. Wang, J. Lumin. 132, 1095 (2012)

    Google Scholar 

  17. R. Khordad, J. Lumin. 134, 201 (2013)

    Google Scholar 

  18. A. Boda, D.S. Kumar, I.V. Sankar, A. Chatterjee, J. Mag. Mag. Mater. 418, 242 (2016)

    ADS  Google Scholar 

  19. M. Tshipa, Indian J. Phys. 86, 807 (2012)

    ADS  Google Scholar 

  20. S. Saha, J. Ganguly, A. Bera, M. Ghosh, Chem. Phys. 480, 17 (2016)

    Google Scholar 

  21. F. Dolcini, F. Rossi, Phys. Rev. B 98, 045436 (2018)

    ADS  Google Scholar 

  22. M.R. Sakr, Opt. Commun. 378, 16 (2016)

    ADS  Google Scholar 

  23. J.B. Oliveira, J.M. Morbec, R.H. Miwa, J. Appl. Phys. 121, 104302 (2017)

    ADS  Google Scholar 

  24. D. Liang, M.R. Sakr, X.P.A. Gao, Nano Lett. 9, 1709 (2009)

    ADS  Google Scholar 

  25. V.P. Amin, J. Li, M.D. Stiles, P.M. Haney, Phys. Rev. B 99, 220405 (2019)

    ADS  Google Scholar 

  26. W. Wang et al., Nat. Nanotechnol. 14, 819 (2019)

    ADS  Google Scholar 

  27. A. Iorio et al., Nano Lett. 19, 652 (2019)

    ADS  Google Scholar 

  28. J.W.G. van den Berg et al., Phys. Rev. Lett. 110, 066806 (2013)

    ADS  Google Scholar 

  29. M.M. Desjardins et al., Nat. Mater. 18, 1060 (2019)

    ADS  Google Scholar 

  30. I. van Weperen et al., Phys. Rev. B 91, 201413 (2015)

    ADS  Google Scholar 

  31. V.G. Dubrovskii, N.V. Sibirev, Phy. Rev. B 77, 035414 (2008)

    ADS  Google Scholar 

  32. S. Gumber, M. Kumar, M. Gambhir, M. Mohan, P.K. Jha, Can. J. Chem. 93, 1264 (2015)

    Google Scholar 

  33. G. Sukirti, K. Manoj, J.P. Kumar, M. Man, Chin. Phys. B 25, 056502 (2016)

    ADS  Google Scholar 

  34. D. Najafi, B. Vaseghi, G. Rezaei, R. Khordad, Eur. Phys. J. Plus 133, 302 (2018)

    Google Scholar 

  35. R. Khordad, H.R. Rastegar Sedehi, Solid State Commun. 269, 118 (2018)

    ADS  Google Scholar 

  36. B. Boyacioglu, A. Chatterjee, J. Appl. Phys. 112, 083514 (2012)

    ADS  Google Scholar 

  37. J.S. Wang, J. Wang, J.T. Lü, Eur. Phys. J. B 62, 381 (2008)

    ADS  Google Scholar 

  38. R. Khordad, H.R. Rastegar Sedehi, Eur. Phys. J. Plus 134, 133 (2019)

    Google Scholar 

  39. G.B. Ibragimov, Fizika 34, 35 (2003)

    Google Scholar 

  40. S.J. Lee, H.C. Jeon, T.W. Kang, S. Souma, Phys. E 40, 2198 (2008)

    Google Scholar 

  41. M.R. Sakr, Phys. E 44, 635 (2011)

    Google Scholar 

  42. C.S. Jia, L.H. Zhang, C.W. Wang, Chem. Phys. Lett. 667, 211 (2017)

    ADS  Google Scholar 

  43. C.S. Jia, C.W. Wang, L.H. Zhang, X.L. Peng, R. Zeng, X.T. You, Chem. Phys. Lett. 676, 150 (2017)

    ADS  Google Scholar 

  44. R. Khordad, A. Avazpour, A. Ghanbari, Chem. Phys. 517, 30 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Khordad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoshbakht, Y., Khordad, R. & Rastegar Sedehi, H.R. Magnetic and Thermodynamic Properties of a Nanowire with Rashba Spin–Orbit Interaction. J Low Temp Phys 202, 59–70 (2021). https://doi.org/10.1007/s10909-020-02522-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02522-2

Keywords

Navigation