Skip to main content
Log in

Evaluation of performance of parallel connected vortex tubes using air, oxygen and carbondioxide with Taguchi method

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This study involves an optimization procedure for the factors affecting the performance of the parallel connected vortex tube system using the Taguchi method. The effect of vortex tube inlet pressure, working fluid, nozzle material and nozzle number parameters on vortex tube performance were obtained as a percentage using experimental design and analysis. Experimental studies were carried out at inlet pressures (150, 300 and 450 kPa) with brass and polyamide nozzles having 3, 4 and 5 nozzle numbers using air, oxygen and carbon dioxide as working fluids. These parameters were selected as control parameters and Taguchi L18 orthogonal array was used to design of experiments. According to the optimization study performed with Taguchi method for the ΔT value, which is the performance indicator of the vortex tube, the most important control factor was found to be working pressure (79.50%). The order of importance of other control factors on ΔT was determined as working fluid, number of nozzles and nozzle material, respectively following of inlet pressure. Furthermore, the validity of the optimization was verified with the confirmation experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Attalla M, Ahmed H, Ahmed MS, El-Wafa AA (2017) Experimental investigation of the effect of nozzle numbers on Ranque–Hilsch vortex tube performance. Exp Heat Transf 30:253–265. https://doi.org/10.1080/08916152.2016.1233150

    Article  Google Scholar 

  2. Kırmacı V, Uluer O (2009) An experimental investigation of the cold mass fraction , nozzle number, and inlet pressure effects on performance of of counter flow vortex tube. J Heat Transf 131:1–6. https://doi.org/10.1115/1.3111259

    Article  Google Scholar 

  3. Kirmaci V, Kaya H (2018) Effects of working fluid, nozzle number, nozzle material and connection type on thermal performance of a Ranque–Hilsch vortex tube: a review. Int J Refrig 91:254–266. https://doi.org/10.1016/j.ijrefrig.2018.05.005

    Article  Google Scholar 

  4. Xue Y, Arjomandi M, Kelso R (2013) The working principle of a vortex tube. Int J Refrig 36:1730–1740. https://doi.org/10.1016/j.ijrefrig.2013.04.016

    Article  Google Scholar 

  5. Aydin O, Baki M (2006) An experimental study on the design parameters of a counterflow vortex tube. Energy 31:2427–2436. https://doi.org/10.1016/j.energy.2005.11.017

    Article  Google Scholar 

  6. Eiamsa-ard S, Wongcharee K, Promvonge P (2010) Experimental investigation on energy separation in a counter-flow Ranque-Hilsch vortex tube: effect of cooling a hot tube. Int Commun Heat Mass Transf 37:156–162. https://doi.org/10.1016/j.icheatmasstransfer.2009.09.013

    Article  Google Scholar 

  7. Markal B, Aydin O, Avci M (2010) An experimental study on the effect of the valve angle of counter-flow Ranque-Hilsch vortex tubes on thermal energy separation. Exp Thermal Fluid Sci 34:966–971. https://doi.org/10.1016/j.expthermflusci.2010.02.013

    Article  Google Scholar 

  8. Simões-Moreira JR (2010) An air-standard cycle and a thermodynamic perspective on operational limits of Ranque-Hilsh or vortex tubes. Int J Refrig 33:765–773. https://doi.org/10.1016/j.ijrefrig.2010.01.005

    Article  Google Scholar 

  9. Avci M (2013) The effects of nozzle aspect ratio and nozzle number on the performance of the Ranque-Hilsch vortex tube. Appl Therm Eng 50:302–308. https://doi.org/10.1016/j.applthermaleng.2012.06.048

    Article  Google Scholar 

  10. Sadi M, Farzaneh-Gord M (2014) Introduction of annular vortex tube and experimental comparison with Ranque-Hilsch vortex tube. Int J Refrig 46:142–151. https://doi.org/10.1016/j.ijrefrig.2014.07.004

    Article  Google Scholar 

  11. Bovand M, Valipour MS, Dincer K, Eiamsa-Ard S (2014) Application of response surface methodology to optimization of a standard Ranque-Hilsch vortex tube refrigerator. Appl Therm Eng 67:545–553. https://doi.org/10.1016/j.applthermaleng.2014.03.039

    Article  Google Scholar 

  12. Agrawal N, Naik SS, Gawale YP (2014) Experimental investigation of vortex tube using natural substances. Int Commun Heat Mass Transf 52:51–55. https://doi.org/10.1016/j.icheatmasstransfer.2014.01.009

    Article  Google Scholar 

  13. Cebeci I, Kirmaci V, Topcuoglu U (2016) The effects of orifice nozzle number and nozzle made of polyamide plastic and aluminum with different inlet pressures on heating and cooling performance of counter flow ranque-hılsch vortex tubes: an experimental investigation. Int J Refrig 72:140–146. https://doi.org/10.1016/j.ijrefrig.2016.07.013

    Article  Google Scholar 

  14. Polat K, Kırmacı V (2011) Determining of gas type in counter flow vortex tube using pairwise fisher score attribute reduction method. Int J Refrig 34:1372–1386. https://doi.org/10.1016/j.ijrefrig.2011.05.010

    Article  Google Scholar 

  15. Polat K, Kirmaci V (2011) Application of the output dependent feature scaling in modeling and prediction of performance of counter flow vortex tube having various nozzles numbers at different inlet pressures of air, oxygen, nitrogen and argon. Int J Refrig 34:1387–1397. https://doi.org/10.1016/j.ijrefrig.2011.03.019

    Article  Google Scholar 

  16. Pourmahmoud N, Rahimi M, Rafiee SE, Hassanzadeh A (2012) A numerical simulation of the effect of inlet gas temperature on the energy separation in a vortex tube. Int J Heat Technol 30:133–140

    Article  Google Scholar 

  17. Seyed ER, Sadeghiazad MM (2014) Three-dimensional and experimental investigation on the effect of cone length of throttle valve on thermal performance of a vortex tube using k-ε turbulence model. Appl Therm Eng 66:65–74. https://doi.org/10.1016/j.applthermaleng.2014.01.073

    Article  Google Scholar 

  18. Thakare HR, Parekh AD (2015) Computational analysis of energy separation in counter-flow vortex tube. Energy 85:62–77. https://doi.org/10.1016/j.energy.2015.03.058

    Article  Google Scholar 

  19. Manimaran R (2016) Computational analysis of energy separation in a counter-flow vortex tube based on inlet shape and aspect ratio. Energy 107:17–28. https://doi.org/10.1016/j.energy.2016.04.005

    Article  Google Scholar 

  20. Rafiee SE, Sadeghiazad MBM (2016) Three-dimensional computational prediction of vortex separation phenomenon inside the Ranque-Hilsch vortex tube. Aviation 20:21–31. https://doi.org/10.3846/16487788.2016.1139814

    Article  Google Scholar 

  21. Thakare HR, Parekh AD (2017) Experimental investigation & CFD analysis of Ranque–Hilsch vortex tube. Energy 133:284–298. https://doi.org/10.1016/j.energy.2017.05.070

    Article  Google Scholar 

  22. Moraveji A, Toghraie D (2017) Computational fluid dynamics simulation of heat transfer and fluid flow characteristics in a vortex tube by considering the various parameters. Int J Heat Mass Transf 113:432–443. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.095

    Article  Google Scholar 

  23. Bazgir A, Nabhani N, Eiamsa-ard S (2018) Numerical analysis of flow and thermal patterns in a double-pipe Ranque-Hilsch vortex tube: influence of cooling a hot-tube. Appl Therm Eng 144:181–208. https://doi.org/10.1016/j.applthermaleng.2018.08.043

    Article  Google Scholar 

  24. Attalla M, Ahmed H, Ahmed MS, El-Wafa AA (2017) Experimental investigation for thermal performance of series and parallel Ranque-Hilsch vortex tube systems. Appl Therm Eng 123:327–339. https://doi.org/10.1016/j.applthermaleng.2017.05.084

    Article  Google Scholar 

  25. Hong YY, Beltran AA, Paglinawan AC (2018) A robust design of maximum power point tracking using Taguchi method for stand-alone PV system. Appl Energy 211:50–63. https://doi.org/10.1016/j.apenergy.2017.11.041

    Article  Google Scholar 

  26. Haghshenaskashani S, Sajadi B, Cehlin M (2018) Multi-objective optimization of impinging jet ventilation systems: Taguchi-based CFD method. Build Simul 11:1207–1214. https://doi.org/10.1007/s12273-018-0450-z

    Article  Google Scholar 

  27. Dong G, Wijaya G, Tang Y, Zhao YF (2018) Optimizing process parameters of fused deposition modeling by Taguchi method for the fabrication of lattice structures. Addit Manuf 19:62–72. https://doi.org/10.1016/j.addma.2017.11.004

    Article  Google Scholar 

  28. Akyalcin S, Akyalcin L, Bjørgen M (2019) Optimization of desilication parameters of low-silica ZSM-12 by Taguchi method. Microporous Mesoporous Mater 273:256–264. https://doi.org/10.1016/j.micromeso.2018.07.014

    Article  Google Scholar 

  29. Pinar AM, Uluer O, Kirmaci V (2009) Optimization of counter flow Ranque-Hilsch vortex tube performance using Taguchi method. Int J Refrig 32:1487–1494. https://doi.org/10.1016/j.ijrefrig.2009.02.018

    Article  Google Scholar 

  30. Pinar AM, Uluer O, Kırmacı V (2009) Statistical assessment of counter-flow vortex tube performance for different nozzle numbers, cold mass fractions, and inlet pressures via taguchi method. Exp Heat Transf 22:271–282. https://doi.org/10.1080/08916150903099058

    Article  Google Scholar 

  31. Kumar GS, Padmanabhan G, Dattatreya Sarma B (2014) Optimizing the temperature of hot outlet air of vortex tube using Taguchi method. Procedia Eng 97:828–836. https://doi.org/10.1016/j.proeng.2014.12.357

    Article  Google Scholar 

  32. Gökçe H, Çiftçi İ, Demir H (2018) Cutting parameter optimization in shoulder milling of commercially pure molybdenum. J Braz Soc Mech Sci Eng 40. https://doi.org/10.1007/s40430-018-1280-8

  33. Demir H, Korkmaz ME, Çakıroglu R, Gunay M (2019) Optimization of cutting parameters in hard turning of AISI H10A steel under minimum quantity lubrication. Eur J Eng Nat Sci 3:157–164. https://doi.org/10.35940/ijrte.B1008.0782S319

    Article  Google Scholar 

  34. Gokce H (2019) Optimisation of cutting tool and cutting parameters in face milling of custom 450 through the Taguchi method. Adv Mater Sci Eng 2019. https://doi.org/10.1155/2019/5868132

  35. Freddi A, Salmon M (2019) Introduction to the Taguchi method. In: Design principles and methodologies: from conceptualization to first prototyping with examples and case studies. Springer International Publishing, Cham, pp. 159–180

  36. Yadav SKS, Yadava V (2012) Simultaneous optimization of multiple quality characteristics in electrical discharge diamond cut-off grinding (EDDCG). Appl Mech Mater 110–116:250–257. https://doi.org/10.4028/www.scientific.net/AMM.110-116.250

    Article  Google Scholar 

  37. Karatas MA, Gokkaya H, Nalbant M (2019) Optimization of machining parameters for abrasive water jet drilling of carbon fiber-reinforced polymer composite material using Taguchi method. Aircr Eng Aerosp Technol. https://doi.org/10.1108/aeat-11-2018-0282

  38. Moffat RJ (1988) Describing the uncertainties in experimental results. Exp Thermal Fluid Sci 1:3–17. https://doi.org/10.1016/0894-1777(88)90043-X

    Article  Google Scholar 

  39. Günay M, Mehmet Erdi K, Yaşar N (2020) Performance analysis of coated carbide tool in turning of Nimonic 80A superalloy under different cutting environments. J Manuf Process 56:678–687. https://doi.org/10.1016/j.jmapro.2020.05.031

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hüseyin Kaya.

Ethics declarations

Conflict of interest

The author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaya, H. Evaluation of performance of parallel connected vortex tubes using air, oxygen and carbondioxide with Taguchi method. Heat Mass Transfer 57, 165–174 (2021). https://doi.org/10.1007/s00231-020-02968-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-020-02968-w

Keywords

Navigation