Skip to main content
Log in

Fully coupled global equations for hydro-mechanical analysis of unsaturated soils

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Fully coupled global equations are proposed for enhancing the performance of Finite Element analysis of unsaturated soils. The governing equation describing mechanical equilibrium is formulated in terms of net stress, and in the mass conservation equation the contribution of this net stress in determining the change of degree of saturation is also included. The novelty of this paper is the development of new global finite element equations that can be used to find an approximate solution to these governing equations. The new equations have a mechanical term appearing in the flow matrix that is additional to the usual hydraulic term. This is in contrast to previous studies in which the coupling matrices ignore this effect. A performance study has been conducted for undrained footing problems, which shows that the additional mechanical term appearing in the flow matrix has a large influence on the accuracy of the numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\( a_{1} \) :

Fitting parameter that defines the variation of compression index with the degree of saturation

\( a_{2} \) :

Fitting parameter that defines the variation of \( S_{r} \) under constant suction

\( a_{\text{d}} \), \( m_{\text{d}} \) and \( m_{\text{d}} \) :

Fitting parameters for the main drying curve

\( a_{\text{w}} \), \( m_{\text{w}} \) and \( m_{\text{w}} \) :

Fitting parameters for the main wetting curve

\( b \) :

Fitting parameter for non-linear hysteresis

\( {\mathbf{b}} \) :

Body force vector

\( {\mathbf{B}}_{\text{u}} \) :

Strain–displacement matrix

\( {\mathbf{C}}_{{\upsigma{\text{v}}}}^{\text{T}}\varvec{\xi} \) :

Coefficient of the volumetric strain due to the net stress change

\( {\mathbf{D}}_{\text{e}}^{ '} \) :

Elastic stiffness matrix

\( {\mathbf{D}}_{\text{ep}} \) :

Elastoplastic stiffness matrix

\( f \) :

Yield function

F :

Force

h :

Depth

H :

Total depth

\( {\mathbf{H}} \) and \( {\mathbf{S}} \) :

Flow matrices

\( {\mathbf{k}} \) :

Matrix of the permeability

\( {\mathbf{K}}_{\text{ep}} \) :

Global elastoplastic stiffness matrix

\( {\mathbf{L}} \) and \( {\mathbf{L}^{\prime}} \) :

Coupling matrices

M :

Stress ratio at the critical state

\( {\mathbf{m}}^{\text{T}} \) :

Transformation vector and equals to {1, 1, 1, 0, 0, 0}

n :

Porosity

\( {\mathbf{N}}_{\text{u}} \) and \( {\mathbf{N}}_{\text{w}} \) :

Matrix of shape functions

\( p^{\prime} \) :

Effective mean stress

\( p_{\text{c}}^{\prime} \) :

Preconsolidation pressure

\( q \) :

Deviator stress

\( q_{\text{w}} \) :

Prescribed fluid flux on the boundary of the domain

\( {\mathbf{Q}} \) :

Quantities of flow

s :

Suction

\( \Delta s_{h}^{\text{new}} \) :

Suction increment obtained from using the new proposed equation

\( \Delta s_{h}^{\text{GES}} \) :

Suction increment obtained from using the governing equation given by Sheng et al. [25]

S :

Surface tractions

\( S_{\text{e}} \) :

Effective degree of saturation

\( S_{\text{r}} \) :

Degree of saturation

t :

Traction forces

t :

Time

\( {\mathbf{U}} \) :

Soil skeleton displacement

\( {\mathbf{U}}_{\text{w}} \) and \( u_{\text{w}} \) :

Pore water pressure

\( \delta {\mathbf{u}}^{\text{T}} \) :

Virtual displacement of the solid phase

V :

Volume of the body

\( {\text{v}} \) :

Darcian velocity vector

\( {\mathbf{W}}_{\text{ep}} \) :

Elastoplastic matrix for the relation between stress and pore pressure

\( \gamma_{\text{w}} \) :

Specific gravity of water

\( {\varvec{\upvarepsilon}} \) :

Strain vector

\( \varepsilon_{\text{v}} \) :

Volumetric strain

\( \varepsilon_{\text{v}}^{\text{p}} \) :

Plastic volumetric strain

\( \theta_{\text{w}} \) :

Volume water content

\( \kappa \) :

Elastic compression index

\( \lambda \) :

Elastoplastic compression index at the saturated state

\( \nu \) :

Specific volume

\( \rho_{\text{w}} \) :

Density of pore fluid

\( {\varvec{\upsigma}}' \) :

Bishop’s effective stress

\( {\varvec{\upsigma}} \) :

Net stress

\( \bar{\nabla } \) :

Differential operator

References

  1. Alonso EE, Gens A, Josa A (1990) Constitutive model for partially saturated soils. Géotechnique 40:405–430

    Article  Google Scholar 

  2. Ehlers W (2002) Foundations of multiphasic and porous materials. In: Ehlers W, Bluhm J (eds) Porous Media. Springer, Berlin

    Chapter  Google Scholar 

  3. Ehlers W, Graf T, Ammann M (2004) Deformation and localization analysis of partially saturated soil. Comput Methods Appl Mech Eng 193(27–29):2885–2910

    Article  Google Scholar 

  4. Gatmiri B, Delage P, Cerrolaza M (1998) Udam: a powerful finite element software for the analysis of unsaturated porous media. Adv Eng Softw 29:29–43

    Article  Google Scholar 

  5. Guo L (2017) Field monitoring and numerical analysis of the influence of trees on soil moisture and ground movement in an urban environment. Doctor of Philosophy, Ph.D., RMIT University

  6. Hillel D (1971) Soil and water: physical principles and processes. Academic Press

  7. Hu R, Chen Y-F, Liu H-H, Zhou C-B (2015) A coupled two-phase fluid flow and elastoplastic deformation model for unsaturated soils: theory, implementation, and application. Int J Numer Anal Methods Geomech 40:1023–1058

    Article  Google Scholar 

  8. Hu R, Hong J-M, Chen Y-F, Zhou C-B (2018) Hydraulic hysteresis effects on the coupled flow–deformation processes in unsaturated soils: numerical formulation and slope stability analysis. Appl Math Model 54:221–245

    Article  MathSciNet  Google Scholar 

  9. Khalili N, Habte M, Zargarbashi S (2008) A fully coupled flow deformation model for cyclic analysis of unsaturated soils including hydraulic and mechanical hystereses. Comput Geotech 35:872–889

    Article  Google Scholar 

  10. Kohgo Y, Nakano M, Miyazaki T (1993) Theoretical aspects of constitutive modelling for unsaturated soils. Soils Found 33:49–63

    Article  Google Scholar 

  11. Li X, Zienkiewicz O (1992) Multiphase flow in deforming porous media and finite element solutions. Comput Struct 45:211–227

    Article  Google Scholar 

  12. Liakopoulos AC (1965) Theoretical solution of the unsteady unsaturated flow problems in soils. Int Assoc Sci Hydrol Bull 10:5–39

    Article  Google Scholar 

  13. Liu X, Zhou A, Shen SL, Li J, Sheng D (2020) A micro-mechanical model for unsaturated soils based on DEM. Comput Methods Appl Mech Eng 368:113183

    Article  MathSciNet  Google Scholar 

  14. Loret B, Khalili N (2002) An effective stress elastic–plastic model for unsaturated porous media. Mech Mater 34:97–116

    Article  Google Scholar 

  15. Ma T, Wei C, Chen P, Wei H (2014) Implicit scheme for integrating constitutive model of unsaturated soils with coupling hydraulic and mechanical behavior. Appl Math Mech 35:1129–1154

    Article  MathSciNet  Google Scholar 

  16. Mun W, McCartney JS (2017) Constitutive model for the undrained compression of unsaturated clay. J Geotech Geoenviron Eng 143(4):04016117

    Article  Google Scholar 

  17. Pereira J-M, Wong H, Dubujet P, Dangla P (2005) Adaptation of existing behaviour models to unsaturated states: application to CJS model. Int J Numer Anal Methods Geomech 29:1127–1155

    Article  Google Scholar 

  18. Rahardjo H, Fredlund DG (1995) Experimental verification of the theory of consolidation for unsaturated soils. Can Geotech J 32:749–766

    Article  Google Scholar 

  19. Romero E, Jommi C (2008) An insight into the role of hydraulic history on the volume changes of anisotropic clayey soils. Water Resources Res 44:W12412

    Article  Google Scholar 

  20. Roscoe KH, Burland J (1968) On the generalized stress–strain behaviour of wet clay. In: Proceedings of a conference on engineering plasticity, Cambridge, UK, March 1968, pp 535–609

  21. Santagiuliana R, Schrefler BA (2006) Enhancing the Bolzon–Schrefler–Zienkiewicz constitutive model for partially saturated soil. Transp Porous Media 65:1–30

    Article  Google Scholar 

  22. Sheng D, Zhou AN (2011) Coupling hydraulic with mechanical models for unsaturated soils. Can Geotech J 48(5):826–840

    Article  Google Scholar 

  23. Sheng D, Fredlund DG, Gens A (2008) A new modelling approach for unsaturated soils using independent stress variables. Can Geotech J 45:511–534

    Article  Google Scholar 

  24. Sheng D, Sloan SW, Gens A (2004) A constitutive model for unsaturated soils: thermomechanical and computational aspects. Comput Mech 33:453–465

    Article  Google Scholar 

  25. Sheng D, Sloan SW, Gens A, Smith DW (2003) Finite element formulation and algorithms for unsaturated soils. Part I: theory. Int J Numer Anal Methods Geomech 27:745–765

    Article  Google Scholar 

  26. Sheng D, Sloan SW, Yu H (2000) Aspects of finite element implementation of critical state models. Comput Mech 26:185–196

    Article  Google Scholar 

  27. Sun DA, Sheng D, Sloan SW (2007) Elastoplastic modelling of hydraulic and stress–strain behaviour of unsaturated soils. Mech Mater 39:212–221

    Article  Google Scholar 

  28. Tamagnini R (2004) An extended Cam-clay model for unsaturated soils with hydraulic hysteresis. Géotechnique 54:223–228

    Article  Google Scholar 

  29. Tsiampousi A, Smith PGC, Potts DM (2017) Coupled consolidation in unsaturated soils: an alternative approach to deriving the governing equations. Comput Geotech 84:238–255

    Article  Google Scholar 

  30. Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils1. Soil Sci Soc Am J 44:892–898

    Article  Google Scholar 

  31. Wheeler S, Sharma R, Buisson M (2003) Coupling of hydraulic hysteresis and stress–strain behaviour in unsaturated soils. Géotechnique 53:41–54

    Article  Google Scholar 

  32. Wheeler S, Sivakumar V (1995) An elasto-plastic critical state framework for unsaturated soil. Géotechnique 45:35–53

    Article  Google Scholar 

  33. Wu S, Zhou A, Li J, Kodikara J, Cheng WC (2019) Hydromechanical behaviour of overconsolidated unsaturated soil in undrained conditions. Can Geotech J 56:1609–1621

    Article  Google Scholar 

  34. Zhang F, Ikariya T (2011) A new model for unsaturated soil using skeleton stress and degree of saturation as state variables. Soils Found 51:67–81

    Article  Google Scholar 

  35. Zhang Y, Zhou A, Nazem M, Carter JP (2019) Finite element implementation of a fully coupled hydro-mechanical model and unsaturated soil analysis under hydraulic and mechanical loads. Comput Geotech 110:222–241

    Article  Google Scholar 

  36. Zhou A, Sheng D (2015) An advanced hydro-mechanical constitutive model for unsaturated soils with different initial densities. Comput Geotech 63:46–66

    Article  Google Scholar 

  37. Zhou A, Sheng D, Sloan SW, Gens A (2012) Interpretation of unsaturated soil behaviour in the stress–saturation space: II: constitutive relationships and validations. Comput Geotech 43:111–123

    Article  Google Scholar 

  38. Zhou A, Sheng D, Sloan SW, Gens A (2012) Interpretation of unsaturated soil behaviour in the stress–saturation space, I: volume change and water retention behaviour. Comput Geotech 43:178–187

    Article  Google Scholar 

  39. Zhou A, Wu S, Li J, Sheng D (2018) Including degree of capillary saturation into constitutive modelling of unsaturated soils. Comput Geotech 95:82–98

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by Australia Research Council (Grant Nos. DP150101340, IH180100010, LP160100649).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annan Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: supplementary to Eq. (3)

1.1 Fully coupled stress–strain relation

Equation (3) is the general form of the stress–strain equations, and it can be derived from constitutive models of unsaturated soils. In this paper, the fully coupled model by Zhou et al. [37, 38] is adopted and givens as:

$$ \begin{aligned} {\mathbf{D}}_{\text{ep}} & = {\varvec{\Gamma}}^{ - 1} \left( {{\mathbf{D}}_{\text{e}}^{ '} - \frac{{{\mathbf{D}}_{\text{e}}^{ '} {\text{a(a}}^{\text{T}} ){\mathbf{D}}_{\text{e}}^{ '} }}{{A + {\text{a}}^{\text{T}} {\mathbf{D}}_{\text{e}}^{ '} {\text{a}}}}} \right) \\ {\mathbf{W}}_{\text{ep}} & = - {\varvec{\Gamma}}^{ - 1} \left[ {\left( {\frac{{{\mathbf{D}}_{\text{e}}^{ '} {\text{a}}C}}{{A + {\text{a}}^{\text{T}} {\mathbf{D}}_{\text{e}}^{ '} {\text{a}}}} + \frac{{\partial {\varvec{\upsigma}}}}{{\partial S_{\text{r}} }}} \right)\frac{{\partial S_{\text{r}} }}{{\partial u_{\text{w}} }} + \frac{{\partial {\varvec{\upsigma}}'}}{{\partial u_{\text{w}} }}} \right] \\ {\varvec{\Gamma}} & = \frac{{\partial {\varvec{\upsigma}}'}}{{\partial {\varvec{\upsigma}}}} + \left( {\frac{{{\mathbf{D}}_{\text{e}}^{ '} {\text{a}}C}}{{A + {\text{a}}^{\text{T}} {\mathbf{D}}_{\text{e}}^{ '} {\text{a}}}} + \frac{{\partial {\varvec{\upsigma}}'}}{{\partial S_{\text{r}} }}} \right)\frac{{\partial S_{\text{r}} }}{{\partial {\varvec{\upsigma}}}} \\ \end{aligned} $$
(16)

where \( {\mathbf{D}}_{\text{e}}^{ '} \) is the elastic stiffness matrix in terms of effective stress, \( \partial S_{\text{r}} /\partial u_{\text{w}} \) and \( \partial S_{\text{r}} /\partial {\varvec{\upsigma}} \) is determined by Eq. (8), \( \partial S_{\text{r}} /\partial u_{\text{w}} \) is given in Eq. (22) and

$$ \begin{aligned} a & = \frac{\partial f}{{\partial {\boldsymbol{\sigma}^{\prime}}}} \\ A & = - \frac{\partial f}{{\partial p_{\text{c}}^{'} }}\frac{{\partial p_{\text{c}}^{'} }}{{\partial \varepsilon_{\text{v}}^{\text{p}} }}\frac{\partial f}{\partial p^{\prime}} \\ C & = \frac{\partial f}{{\partial S_{\text{r}} }} \\ \end{aligned} $$

where \( \varepsilon_{\text{v}}^{\text{p}} \) is the plastic volumetric strain, and \( {\boldsymbol{\sigma}^{\prime}} \) is Bishop’s effective stress is given as

$$ {\boldsymbol{\upsigma}^{\prime}} = {\varvec{\upsigma}} - {\mathbf{m}}S_{\text{e}} u_{\text{w}} $$
(17)

where \( {\varvec{\upsigma}} \) is the net stress vector or total stress vector, \( {\boldsymbol{\upsigma}^{\prime}} \) is Bishop’s effective stress vector, m is a column vector (\( m = \left\{ {1,1,1,0,0,0} \right\} \)), \( u_{\text{w}} \) is the pore water pressure, and \( S_{\text{e}} \) is the effective degree of saturation given as

$$ S_{\text{e}} = \frac{{S_{\text{r}} - S_{\text{r}}^{\text{res}} }}{{S_{\text{r}}^{ 0} - S_{\text{r}}^{\text{res}} }} $$
(18)

The yield function, \( f \) is given as

$$ f = f\left( {{\boldsymbol{\sigma}^{\prime}}, S_{\text{r}} , p_{\text{c}}^{'} } \right) = \left( {\frac{q}{{M^{2} p}^{\prime}} + p^{\prime}} \right) - \left( {p_{\text{c}}^{'} } \right)^{\beta } = 0 $$
(19)

where \( q \) is the deviator stress, \( p^{\prime} \) is the effective mean stress, M is the stress ratio at the critical state, \( p_{\text{c}}^{'} \) is the preconsolidation pressure at \( S_{\text{r}} = S_{\text{r}}^{ 0} \), and it is taken as the hardening parameter, and

$$ \beta = \frac{\lambda - \kappa }{{\lambda - \left( {\lambda - \kappa } \right)\left( {1 - S_{\text{e}} } \right)^{{a_{1} }} - \kappa }} $$
(20)

where \( \lambda \) is the elastoplastic compression index at the saturated state, \( \kappa \) is elastic compression index, and \( a_{1} \) is a fitting parameter that defines the variation of compression index with the degree of saturation.

The hardening parameter, \( p_{\text{c}}^{'} \) can be determined from

$$ {\text{d}}p_{\text{c}}^{'} = {\mathbf{G}}_{\text{ep}} {\text{d}}{\varvec{\upvarepsilon}} + N_{\text{ep}} {\text{d}}u_{\text{w}} $$
(21)

where

$$ \begin{aligned} {\mathbf{G}}_{\text{ep}} & = \frac{{\partial p_{\text{c}}^{'} }}{{\partial \varepsilon_{\text{v}}^{\text{p}} }}\frac{\partial f}{\partial p^{\prime}}\left( {\frac{{{\text{a}}^{\text{T}} {\mathbf{D}}_{\text{e}}^{ '} + C\frac{{\partial S_{\text{r}} }}{{\partial {\varvec{\upsigma}}}}{\mathbf{D}}_{\text{ep}} }}{{A + {\text{a}}^{\text{T}} {\mathbf{D}}_{\text{e}}^{ '} {\text{a}}}}} \right) \\ N_{\text{ep}} & = \frac{{\partial p_{\text{c}}^{'} }}{{\partial \varepsilon_{\text{v}}^{\text{p}} }}\frac{\partial f}{\partial p^{\prime}}\frac{{C\left( {\frac{{\partial S_{\text{r}} }}{{\partial u_{\text{w}} }} + \frac{{\partial S_{\text{r}} }}{{\partial {\varvec{\upsigma}}}}{\mathbf{W}}_{\text{ep}} } \right)}}{{A + {\text{a}}^{\text{T}} {\mathbf{D}}_{\text{e}}^{ '} {\text{a}}}} \\ \end{aligned} $$

More details of Eq. (3) can be found in Sect. 2 of Zhang et al. [35].

Appendix 2: supplementary to Eq. (7)

2.1 Enhanced soil–water retention equation

The coupled behaviour of the degree of saturation can be expressed as Eq. (7). The first term \( \left( {\frac{{\partial S_{\text{r}} }}{{\partial u_{\text{w}} }}} \right) \) adopted in this paper, is the hydraulic term of soil–water retention soil–water retention curve (SWRC), and stands for the variation of degree of saturation caused by suction change. The first term \( \left( {\frac{{\partial S_{\text{r}} }}{{\partial u_{\text{w}} }}} \right) \) can be written as:

$$ \begin{aligned} & \frac{{\partial S_{\text{r}} }}{{\partial u_{\text{w}} }} = \frac{{\partial S_{\text{r}} }}{{\partial S_{\text{e}} }}\frac{{\partial S_{\text{e}} }}{{\partial u_{\text{w}} }} \\ &\quad = \left\{ {\begin{array}{*{20}c} {(S_{\text{r}}^{ 0} - S_{\text{r}}^{\text{res}} )\left( {\frac{{u_{\text{w}}^{\text{d}} }}{{u_{\text{w}} }}} \right)^{ - b} \left[ {\left( {\frac{{\partial S_{\text{e}}^{\text{d}} }}{{\partial u_{\text{w}} }}} \right)_{{u_{\text{w}} = u_{\text{w}}^{\text{d}} }} } \right],} & {{\text{if drying}} ({\text{d}}u_{\text{w}} < 0)} \\ {(S_{\text{r}}^{ 0} - S_{\text{r}}^{\text{res}} )\left( {\frac{{u_{\text{w}}^{\text{w}} }}{{u_{\text{w}} }}} \right)^{b} \left[ {\left( {\frac{{\partial S_{\text{e}}^{\text{w}} }}{{\partial u_{\text{w}} }}} \right)_{{u_{\text{w}} = u_{\text{w}}^{\text{w}} }} } \right],} & { {\text{if wetting}} ({\text{d}}u_{\text{w}} > 0)} \\ \end{array} } \right. \end{aligned} $$
(22)

where the main drying/wetting curve is defined by the VG model as:

$$ \left\{ {\begin{array}{*{20}c} {S_{\text{e}}^{\text{d}} = \left[ {1 + \left( {\frac{{ - u_{\text{w}} }}{{a_{\text{d}} }}} \right)^{{m_{\text{d}} }} } \right]^{{ - n_{\text{d}} }} } & {\left( {\text{for main drying}} \right)} \\ {S_{\text{e}}^{\text{w}} = \left[ {1 + \left( {\frac{{ - u_{\text{w}} }}{{a_{\text{w}} }}} \right)^{{m_{\text{w}} }} } \right]^{{ - n_{\text{w}} }} } & {\left( {\text{for main wetting}} \right)} \\ \end{array} } \right. $$
$$ \left\{ {\begin{array}{*{20}cc} &{\frac{{\partial S_{\text{e}}^{\text{d}} }}{{\partial u_{\text{w}} }} = n_{\text{d}} \left[ {1 + \left( {\frac{{ - u_{\text{w}} }}{{a_{\text{d}} }}} \right)^{{m_{\text{d}} }} } \right]\left( {\frac{{m_{\text{d}} }}{{a_{\text{d}} }}} \right)\left( {\frac{{ - u_{\text{w}} }}{{a_{\text{d}} }}} \right)^{{m_{\text{d}} - 1}} } \\ & {\left( {\text{gredient of main drying branch}} \right)} \\ &{\frac{{\partial S_{\text{e}}^{\text{w}} }}{{\partial u_{\text{w}} }} = n_{\text{w}} \left[ {1 + \left( {\frac{{ - u_{\text{w}} }}{{a_{\text{w}} }}} \right)^{{m_{\text{w}} }} } \right]\left( {\frac{{m_{\text{w}} }}{{a_{\text{w}} }}} \right)\left( {\frac{{ - u_{\text{w}} }}{{a_{\text{w}} }}} \right)^{{m_{\text{w}} - 1}} } \\ & {\left( {\text{gredient of main wetting branch}} \right)} \\ \end{array} } \right. $$
$$ \left\{ {\begin{array}{*{20}c} {u_{\text{w}}^{\text{d}} = - a_{\text{d}} \left[ {\left( {\frac{{S_{\text{r}} - S_{\text{r}}^{\text{res}} }}{{S_{\text{r}}^{ 0} - S_{\text{r}}^{\text{res}} }}} \right)^{{ - \frac{1}{{n_{\text{d}} }}}} - 1} \right]^{{\frac{1}{{m_{\text{d}} }}}} } & {\left( {\text{for drying}} \right)} \\ {u_{\text{w}}^{\text{w}} = - a_{\text{w}} \left[ {\left( {\frac{{S_{\text{r}} - S_{\text{r}}^{\text{res}} }}{{S_{\text{r}}^{ 0} - S_{\text{r}}^{\text{res}} }}} \right)^{{ - \frac{1}{{n_{\text{w}} }}}} - 1} \right]^{{\frac{1}{{m_{\text{w}} }}}} } & {\left( {\text{for wetting}} \right)} \\ \end{array} } \right. $$

where \( a_{\text{d}} \), \( m_{\text{d}} \) and \( m_{\text{d}} \) are fitting parameters for the main drying curve, \( a_{\text{w}} \), \( m_{\text{w}} \) and \( m_{\text{w}} \) are fitting parameters for the main wetting curve, and \( b \) is a fitting parameter for non-linear hysteresis.

The second term in Eq. (7), \( \frac{{\partial S_{r} }}{{\partial {\varvec{\upsigma}}}} \) is the mechanical term of the SWRC and it can be determined by Eq. (8), where

$$ \begin{aligned} {\mathbf{C}}_{{{\text{v}\upsigma}}} & = \left\{ {\begin{array}{*{20}c} {\frac{{\frac{\kappa }{{p^{\prime}\left( {1 + e} \right)}}\frac{\partial p^{\prime}}{\partial p} + J\frac{\partial f}{\partial p^{\prime}}\frac{\partial p^{\prime}}{\partial p}}}{{1 - \frac{\kappa }{{p^{\prime}\left( {1 + e} \right)}}\frac{{\partial p^{\prime}}}{{\partial S_{\text{r}} }}\frac{{\partial S_{\text{r}} }}{{\partial \varepsilon_{{{\text{v}\upsigma}}} }} - J\left( {\frac{\partial f}{\partial \lambda }\frac{\partial \lambda }{{\partial S_{\text{r}} }} + \frac{\partial f}{\partial p^{\prime}}\frac{\partial p^{\prime}}{{\partial S_{\text{r}} }}} \right)\frac{{\partial S_{\text{r}} }}{{\partial \varepsilon_{{{\text{v}\upsigma}}} }}}}} \\ {\frac{{J\frac{\partial f}{\partial q}}}{{1 - \frac{\kappa }{{p^{\prime}\left( {1 + e} \right)}}\frac{{\partial p^{\prime}}}{{\partial S_{\text{r}} }}\frac{{\partial S_{\text{r}} }}{{\partial \varepsilon_{{{\text{v}\upsigma}}} }} - J\left( {\frac{\partial f}{\partial \lambda }\frac{\partial \lambda }{{\partial S_{\text{r}} }} + \frac{\partial f}{\partial p^{\prime}}\frac{\partial p^{\prime}}{{\partial S_{\text{r}} }}} \right)\frac{{\partial S_{\text{r}} }}{{\partial \varepsilon_{{{\text{v}\upsigma}}} }}}}} \\ \end{array} } \right\}\\ &\quad \left\{ {\left( {\frac{\partial p^{\prime}}{{\partial {\varvec{\upsigma}}}}} \right)^{\text{T}} ,\varvec{ }\left( {\frac{\partial q}{{\partial {\varvec{\upsigma}}}}} \right)^{\text{T}} } \right\} \end{aligned} $$
(23)

where \( J = - \left( {p_{\text{c}}^{'} \frac{\partial f}{{\partial p_{\text{c}}^{'} }}\frac{1 + e}{{\lambda_{0} - \kappa }}} \right)^{ - 1} \).

Appendix 3: Newton–Raphson iteration scheme

The backward Euler method with Newton–Raphson iterations can be summarised as following steps:

Enter with the current displacements and pore pressures \( {\mathbf{X}}_{t} = \left\{ {{\mathbf{U}}_{t} ,{\mathbf{U}}_{{{\text{w}}t}} } \right\} \), the corresponding derivatives \( {\dot{\mathbf{X}}}_{t} \), the current time substep size \( h \), the iteration tolerance ITOL.

Compute estimate of new displacements and pore pressures and the corresponding rates using

$$ \begin{aligned} {\dot{\mathbf{X}}}_{t + h}^{0} & = {\dot{\mathbf{X}}}_{t} \\ {\tilde{\mathbf{X}}}_{t + h}^{0} & = {\mathbf{X}}_{n - 1} + h{\dot{\mathbf{X}}}_{t} \end{aligned} $$

Set the initial the relative change in \( {\tilde{\mathbf{X}}} \) as:

$$ \alpha^{0} = h{\dot{\mathbf{X}}}_{t} /{\tilde{\mathbf{X}}}_{t + h}^{0} $$

Repeat steps 5 to 7 until \( \alpha^{i} \le ITOL \), where ITOL is a given tolerance.

Compute the residual vector

$$ {\mathbf{R}}^{i} = \left[ {\begin{array}{*{20}c} {\frac{{{\mathbf{F}}_{t + h}^{\text{ext}} - {\mathbf{F}}_{t + h}^{\text{int}} }}{h}} \\ {{\mathbf{Q}}_{t + h}^{\text{ext}} - {\mathbf{Q}}_{t + h}^{\text{int}} } \\ \end{array} } \right] $$

and solve for \( \delta {\dot{\mathbf{X}}}^{i} \) using

$$ \delta {\dot{\mathbf{X}}}^{i} = \left[ {{\mathbf{C}}_{\text{ep}} + h{\mathbf{K}}} \right]^{ - 1} {\mathbf{R}}^{i} $$

where \( {\mathbf{F}}_{t + h}^{\text{int}} \), \( {\mathbf{Q}}_{t + h}^{\text{int}} \), \( {\mathbf{C}}_{\text{ep}} = \left[ {\begin{array}{*{20}c} {{\mathbf{K}}_{\text{ep}} } & {\mathbf{L}} \\ {{\mathbf{L}^{\prime}}} & {\mathbf{S}} \\ \end{array} } \right] \) and \( {\mathbf{K}} = \left[ {\begin{array}{*{20}c} 0 & 0 \\ 0 & {\mathbf{H}} \\ \end{array} } \right] \) are evaluated at \( {\tilde{\mathbf{X}}}_{t + h}^{i - 1} \).

Update the displacements and pore pressures and the corresponding rates to

$$ \begin{aligned} {\dot{\mathbf{X}}}_{t + h}^{i} & = {\dot{\mathbf{X}}}_{t + h}^{i - 1} + \delta {\dot{\mathbf{X}}}^{i} \\ {\tilde{\mathbf{X}}}_{t + h}^{i} & = {\mathbf{X}}_{t} + h{\dot{\mathbf{X}}}_{t + h}^{i} \end{aligned} $$

Compute convergence criterion

$$ \alpha^{i} = h{\dot{\mathbf{X}}}^{i} /{\tilde{\mathbf{X}}}_{t + h}^{i} $$

If \( \alpha^{i} \le {\text{ITOL}} \) then go to step 8.

Exit with displacements and pore pressures, \( {\tilde{\mathbf{X}}}_{t + h} = {\tilde{\mathbf{X}}}_{t + h}^{i} \), and there rates, \( {\dot{\mathbf{X}}}_{t + h} = {\dot{\mathbf{X}}}_{t + h}^{i} \), at time \( h + t \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhou, A., Nazem, M. et al. Fully coupled global equations for hydro-mechanical analysis of unsaturated soils. Comput Mech 67, 107–125 (2021). https://doi.org/10.1007/s00466-020-01922-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-020-01922-1

Keywords

Navigation