Skip to main content
Log in

Multivariate Optimization of an Ultrasound-Assisted Deep Eutectic Solvent-Based Liquid-Phase Microextraction Method for HPLC–UV Analysis of Carbamazepine in Plasma

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

An ultrasound-assisted deep eutectic solvent-based liquid-phase microextraction (UA-DES-LPME) was established, for the first time, for the extraction of carbamazepine (CBZ) from human plasma samples. The extract was determined by HPLC-ultraviolet detection (HPLC–UV). A deep eutectic solvent (DES) was readily synthesized by mixing choline chloride and phenol (ChCl:Ph) in the mole ratio of 1:2 in ambient temperature and used without any further purification. In the present method, THF was used as an emulsifier agent. Some parameters, including the DES components mole ratio, kind of emulsifier agent, and salt addition effect, were optimized by a one-at-a-time approach. Central composite design (CCD) was used to optimize the rest of the effective parameters, including DES volume, pH, ultrasonication time, and THF volume. The optimum conditions were found to be: 11.78 pH, 314 µL DES volume, 523 µL THF volume, and 9.0 min ultrasonication time. The performance of the method was evaluated under optimum conditions, and the method exhibited good linearity over a concentration range of 10–1500 ng mL−1, low limit of detection and quantitation, good precision, and high extraction recovery. Finally, the applicability of the method was assessed by analysis of the spiked plasma samples, and the results have shown high relative recoveries with good precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. https://www.drugbank.ca/drugs/DB00564. April 11, 2020

  2. Chen C, Wang Y, Ding S, Hong C, Wang Z (2019) A novel sensitive and selective electrochemical sensor based on integration of molecularly imprinted with hollow silver nanospheres for determination of carbamazepine. Microchem J 147:191–197. https://doi.org/10.1016/j.microc.2019.03.024

    Article  CAS  Google Scholar 

  3. Brunton L, Chabner B, Knollmann B (2018) Goodman & Gilman’s The Pharmacological Basis of THERAPEUTICS. In: Brunton L (ed) Goodman and Gilman’s The Pharmacological Basis of THERAPEUTICS. McGraw-Hill, Newyork

    Google Scholar 

  4. Rezaee M, Assadi Y, Milani Hosseini M-R, Aghaee E, Ahmadi F, Berijani S (2006) Determination of organic compounds in water using dispersive liquid–liquid microextraction. J Chromatogr A 1116(1):1–9. https://doi.org/10.1016/j.chroma.2006.03.007

    Article  CAS  PubMed  Google Scholar 

  5. Behbahani M, Najafi F, Bagheri S, Bojdi MK, Salarian M, Bagheri A (2013) Application of surfactant assisted dispersive liquid–liquid microextraction as an efficient sample treatment technique for preconcentration and trace detection of zonisamide and carbamazepine in urine and plasma samples. J Chromatogr A 1308:25–31. https://doi.org/10.1016/j.chroma.2013.07.088

    Article  CAS  PubMed  Google Scholar 

  6. Parvin S, Aghamohammadi M, Fallahi E, Kalhor H (2020) Simultaneous determination of lamotrigine and carbamazepine in plasma using ultrasound-assisted emulsification Microextraction-high performance liquid chromatography. J Anal Chem 75(5):622–628. https://doi.org/10.1134/S1061934820050160

    Article  Google Scholar 

  7. Rezaee M, Mashayekhi HA (2012) Solid-phase extraction combined with dispersive liquid-liquid microextraction as an efficient and simple method for the determination of carbamazepine in biological samples. Anal Methods-UK 4(9):2887–2892. https://doi.org/10.1039/c2ay25460c

    Article  CAS  Google Scholar 

  8. Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK (2004) Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc 126(29):9142–9147. https://doi.org/10.1021/ja048266j

    Article  CAS  PubMed  Google Scholar 

  9. Pena-Pereira F, Namieśnik J (2014) Ionic liquids and deep eutectic mixtures: sustainable solvents for extraction processes. Chemsuschem 7(7):1784–1800. https://doi.org/10.1002/cssc.201301192

    Article  CAS  PubMed  Google Scholar 

  10. Shishov A, Bulatov A, Locatelli M, Carradori S, Andruch V (2017) Application of deep eutectic solvents in analytical chemistry. A Rev Microchem J 135:33–38. https://doi.org/10.1016/j.microc.2017.07.015

    Article  CAS  Google Scholar 

  11. Heidari H, Ghanbari-Rad S, Habibi E (2020) Optimization deep eutectic solvent-based ultrasound-assisted liquid-liquid microextraction by using the desirability function approach for extraction and preconcentration of organophosphorus pesticides from fruit juice samples. J Food Compos Anal 87:103389. https://doi.org/10.1016/j.jfca.2019.103389

    Article  CAS  Google Scholar 

  12. Shishov AY, Chislov MV, Nechaeva DV, Moskvin LN, Bulatov AV (2018) A new approach for microextraction of non-steroidal anti-inflammatory drugs from human urine samples based on in-situ deep eutectic mixture formation. J Mol Liq 272:738–745. https://doi.org/10.1016/j.molliq.2018.10.006

    Article  CAS  Google Scholar 

  13. Shishov A, Volodina N, Nechaeva D, Gagarinova S, Bulatov A (2019) An automated homogeneous liquid-liquid microextraction based on deep eutectic solvent for the HPLC-UV determination of caffeine in beverages. Microchem J 144:469–473. https://doi.org/10.1016/j.microc.2018.10.014

    Article  CAS  Google Scholar 

  14. Deng W, Yu L, Li X, Chen J, Wang X, Deng Z, Xiao Y (2019) Hexafluoroisopropanol-based hydrophobic deep eutectic solvents for dispersive liquid-liquid microextraction of pyrethroids in tea beverages and fruit juices. Food Chem 274:891–899. https://doi.org/10.1016/j.foodchem.2018.09.048

    Article  CAS  PubMed  Google Scholar 

  15. Safavi A, Ahmadi R, Ramezani AM (2018) Vortex-assisted liquid-liquid microextraction based on hydrophobic deep eutectic solvent for determination of malondialdehyde and formaldehyde by HPLC-UV approach. Microchem J 143:166–174. https://doi.org/10.1016/j.microc.2018.07.036

    Article  CAS  Google Scholar 

  16. Jouyban A, Farajzadeh MA, Afshar Mogaddam MR (2018) A lighter-than-water deep eutectic-solvent-based dispersive liquid-phase microextraction method in a U-shaped homemade device. New J Chem 42(12):10100–10110. https://doi.org/10.1039/C8NJ00597D

    Article  CAS  Google Scholar 

  17. Asiabi H, Yamini Y, Shamsayei M, Mehraban JA (2018) A nanocomposite prepared from a polypyrrole deep eutectic solvent and coated onto the inner surface of a steel capillary for electrochemically controlled microextraction of acidic drugs such as losartan. Microchim Act 185(3):169. https://doi.org/10.1007/s00604-018-2684-y

    Article  CAS  Google Scholar 

  18. Kanberoglu GS, Yilmaz E, Soylak M (2018) Usage of deep eutectic solvents for the digestion and ultrasound-assisted liquid phase microextraction of copper in liver samples. J Iran Chem Soc 15(10):2307–2314. https://doi.org/10.1007/s13738-018-1419-7

    Article  CAS  Google Scholar 

  19. Kumps A (1984) Simultaneous HPLC determination of Oxcarbazepine, carbamazepine and their metabolites in serum. J Liq Chromatogr 7(6):1235–1241. https://doi.org/10.1080/01483918408074040

    Article  CAS  Google Scholar 

  20. Khezeli T, Daneshfar A, Sahraei R (2015) Emulsification liquid–liquid microextraction based on deep eutectic solvent: An extraction method for the determination of benzene, toluene, ethylbenzene and seven polycyclic aromatic hydrocarbons from water samples. J Chromatogr A 1425:25–33. https://doi.org/10.1016/j.chroma.2015.11.007

    Article  CAS  PubMed  Google Scholar 

  21. Psillakis E, Kalogerakis N (2002) Developments in single-drop microextraction. TrAC Trends Anal Chem 21(1):54–64. https://doi.org/10.1016/S0165-9936(01)00126-1

    Article  Google Scholar 

  22. Hashemi M, Jahanshahi N, Habibi A (2012) Application of ultrasound-assisted emulsification microextraction for determination of benzene, toluene, ethylbenzene and o-xylene in water samples by gas chromatography. Desalination 288:93–97. https://doi.org/10.1016/j.desal.2011.12.017

    Article  CAS  Google Scholar 

  23. Jones OAH, Voulvoulis N, Lester JN (2002) Aquatic environmental assessment of the top 25 English prescription pharmaceuticals. Water Res 36(20):5013–5022. https://doi.org/10.1016/S0043-1354(02)00227-0

    Article  CAS  PubMed  Google Scholar 

  24. Heidari H, Limouei-Khosrowshahi B (2019) Magnetic solid phase extraction with carbon-coated Fe3O4 nanoparticles coupled to HPLC-UV for the simultaneous determination of losartan, carvedilol, and amlodipine besylate in plasma samples. J Chromatogr B 1114–1115:24–30. https://doi.org/10.1016/j.jchromb.2019.03.025

    Article  CAS  Google Scholar 

  25. Heidari H, Razmi H, Jouyban A (2014) Desirability function approach for the optimization of an in-syringe ultrasound-assisted emulsification-microextraction method for the simultaneous determination of amlodipine and nifedipine in plasma samples. J Sep Sci 37(12):1467–1474. https://doi.org/10.1002/jssc.201400030

    Article  CAS  PubMed  Google Scholar 

  26. ICH Harmonised Tripartite Guideline. Validation of Analytical Procedures: Text and Methodology Q2 (R1), International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, 1994

  27. Franceschi L, Furlanut M (2005) A simple method to monitor plasma concentrations of oxcarbazepine, carbamazepine, their main metabolites and lamotrigine in epileptic patients. Pharmacol Res 51(4):297–302. https://doi.org/10.1016/j.phrs.2004.09.008

    Article  CAS  PubMed  Google Scholar 

  28. Wang R, Cui Y, Hu F, Liu W, Du Q, Zhang Y, Zha J, Huang T, Fizir M, He H (2019) Selective recognition and enrichment of carbamazepine in biological samples by magnetic imprinted polymer based on reversible addition-fragmentation chain transfer polymerization. J Chromatogr A 1591:62–70. https://doi.org/10.1016/j.chroma.2019.01.057

    Article  CAS  PubMed  Google Scholar 

  29. Shokry E, Villanelli F, Malvagia S, Rosati A, Forni G, Funghini S, Ombrone D, Della Bona M, Guerrini R, la Marca G (2015) Therapeutic drug monitoring of carbamazepine and its metabolite in children from dried blood spots using liquid chromatography and tandem mass spectrometry. J Pharm Biomed Anal 109:164–170. https://doi.org/10.1016/j.jpba.2015.02.045

    Article  CAS  PubMed  Google Scholar 

  30. Wu S, Xu W, Subhani Q, Yang B, Chen D, Zhu Y, Li L (2012) Ion chromatography combined with online electrochemical derivatization and fluorescence detection for the determination of carbamazepine in human plasma. Talanta 101:541–545. https://doi.org/10.1016/j.talanta.2012.09.039

    Article  CAS  PubMed  Google Scholar 

  31. Zhang J, Liu D, Meng X, Shi Y, Wang R, Xiao D, He H (2017) Solid phase extraction based on porous magnetic graphene oxide/β-cyclodextrine composite coupled with high performance liquid chromatography for determination of antiepileptic drugs in plasma samples. J Chromatogr A 1524:49–56. https://doi.org/10.1016/j.chroma.2017.09.074

    Article  CAS  PubMed  Google Scholar 

  32. Fortuna A, Sousa J, Alves G, Falcão A, Soares-da-Silva P (2010) Development and validation of an HPLC-UV method for the simultaneous quantification of carbamazepine, oxcarbazepine, eslicarbazepine acetate and their main metabolites in human plasma. Anal Bioanal Chem 397(4):1605–1615. https://doi.org/10.1007/s00216-010-3673-0

    Article  CAS  PubMed  Google Scholar 

  33. Queiroz RHC, Bertucci C, Malfará WR, Dreossi SAC, Chaves AR, Valério DAR, Queiroz MEC (2008) Quantification of carbamazepine, carbamazepine-10,11-epoxide, phenytoin and phenobarbital in plasma samples by stir bar-sorptive extraction and liquid chromatography. J Pharm Biomed Anal 48(2):428–434. https://doi.org/10.1016/j.jpba.2008.03.020

    Article  CAS  PubMed  Google Scholar 

  34. Kim K-B, Seo K-A, Kim S-E, Bae SK, Kim D-H, Shin J-G (2011) Simple and accurate quantitative analysis of ten antiepileptic drugs in human plasma by liquid chromatography/tandem mass spectrometry. J Pharm Biomed Anal 56(4):771–777. https://doi.org/10.1016/j.jpba.2011.07.019

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Heidari.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidari, H., Yari, B. Multivariate Optimization of an Ultrasound-Assisted Deep Eutectic Solvent-Based Liquid-Phase Microextraction Method for HPLC–UV Analysis of Carbamazepine in Plasma. Chromatographia 83, 1467–1475 (2020). https://doi.org/10.1007/s10337-020-03966-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-020-03966-0

Keywords

Navigation