Skip to main content
Log in

Simultaneous Determination of Losartan and Rosuvastatin in Rat Plasma Using Liquid Chromatography–Tandem Mass Spectrometric Technique for Application into Pharmacokinetic and Drug–Drug Interaction Studies

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

The combined therapy benefits of losartan and rosuvastatin, within the vascular injury, have been well characterized. Nonetheless, the pharmacokinetic interactions between such therapeutic agents have not been yet figured out, making the need for a sensitive analytical technique to be of great significance. In view of this, a highly selective, sensitive, and well-validated liquid chromatography–tandem mass spectrometric technique has been developed for the simultaneous estimation of losartan (LOS) and rosuvastatin (ROS) within the rat plasma using simvastatin as an internal standard. The proposed technique adopted a simple plasma protein preparation by acetonitrile for the extraction and purification of the drug-plasma samples obtained from the rat animal models. A separation process on the Agilent™ Eclipse-Plus® (C18, 0.46 × 15 cm, 3.5 μm) columns was conducted using gradient mobile phase system comprising of water/0.1%w/v formic acid and acetonitrile at 0.9 mL min−1 flow rate. Precursor quantification into production was performed using the multiple reaction monitoring within the positive-ionization mode. Method linearity was obeyed within 1–5000 ng mL−1 for both LOS and ROS, while the validation process was performed according to the guidelines adopted by the US-FDA bioanalytical framework. The pharmacokinetic interactions after oral co-administration of both drugs furnished significant changes within their respective pharmacokinetic parameters including peak-plasma concentration, elimination t1/2, AUC, volume of distribution, and plasma clearance. Additionally, a mutual competitive displacement for each drug from their plasma albumin bindings showed a significant impact on drug's pharmacokinetic profile and was demonstrated through molecular modeling investigations. Finally, the presented study laid an evidence for a two-way pharmacological synergism with the combined therapy of LOS and ROS via increased hepatic influx of ROS and peak-plasma concentration of EXP3174, the LOS more potent metabolite. Therefore, the proposed method provides a useful tool for the drug–drug interaction investigations being valuable for prospective bioequivalence studies and therapeutic drug monitoring.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Horiuchi M, Cui TX, Li Z, Li JM, Nakagami H, Iwai M (2003) Fluvastatin enhances the inhibitory effects of a selective angiotensin II type 1 receptor blocker, valsartan, on vascular neointimal formation. Circulation 107(1):106–112. https://doi.org/10.1161/01.cir.0000043244.13596.20

    Article  CAS  Google Scholar 

  2. Moon MC, Molnar K, Yau L, Zahradka P (2004) Perivascular delivery of losartan with surgical fibrin glue prevents neointimal hyperplasia after arterial injury. J Vasc Surg 40(1):130–137. https://doi.org/10.1016/j.jvs.2004.02.031

    Article  Google Scholar 

  3. Preusch MR, Vanakaris A, Bea F, Ieronimakis N, Shimizu T, Konstandin M, Morris-Rosenfeld S, Albrecht C, Kranzhöfer A, Katus HA, Blessing E, Kranzhöfer R (2010) Rosuvastatin reduces neointima formation in a rat model of balloon injury. Eur J Med Res 15(11):461–467. https://doi.org/10.1186/2047-783x-15-11-461

    Article  CAS  PubMed Central  Google Scholar 

  4. Lee SG, Lee SJ, Thuy NVP, Kim JS, Lee JJ, Lee OH, Kim CK, Oh J, Park S, Kim SH, Lee SH, Hong SJ, Ahn CM, Kim BK, Ko YG, Choi D, Hong MK, Jang Y (2019) Synergistic protective effects of a statin and an angiotensin receptor blocker for initiation and progression of atherosclerosis. PLoS ONE 14(5):e0215604. https://doi.org/10.1371/journal.pone.0215604

    Article  PubMed Central  Google Scholar 

  5. Yi I, Lee J-J, Park J-S, Zhang WY, Kim I-S, Kim Y, Shin C-Y, Kim HS, Myung C-S (2010) Enhanced effect of losartan and rosuvastatin on neointima hyperplasia. Arch Pharmacal Res 33(4):593–600

    Article  CAS  Google Scholar 

  6. Martin PD, Mitchell PD, Schneck DW (2002) Pharmacodynamic effects and pharmacokinetics of a new HMG-CoA reductase inhibitor, rosuvastatin, after morning or evening administration in healthy volunteers. Br J Clin Pharmacol 54(5):472–477. https://doi.org/10.1046/j.1365-2125.2002.01688.x

    Article  CAS  PubMed Central  Google Scholar 

  7. AstraZeneca Pharmaceuticals (2003) Crestor (rosuvastatin calcium) prescribing information. Wilmington, Delaware

    Google Scholar 

  8. Xu F, Mao C, Liu Y, Wu L, Xu Z, Zhang L (2009) Losartan chemistry and its effects via AT1 mechanisms in the kidney. Curr Med Chem 16(28):3701–3715

    Article  CAS  PubMed Central  Google Scholar 

  9. Sica DA, Gehr TWB, Ghosh S (2005) Clinical Pharmacokinetics of Losartan. Clin Pharmacokinet 44(8):797–814. https://doi.org/10.2165/00003088-200544080-00003

    Article  CAS  Google Scholar 

  10. Hull CK, Penman AD, Smith CK, Martin PD (2002) Quantification of rosuvastatin in human plasma by automated solid-phase extraction using tandem mass spectrometric detection. J Chromatogr B 772(2):219–228

    Article  CAS  Google Scholar 

  11. Singh SS, Sharma K, Patel H, Jain M, Shah H, Gupta S, Thakkar P, Patel N, Singh SP, Lohray BB (2005) Estimation of rosuvastatin in human plasma by HLPC tandem mass spectroscopic method and its application to bioequivalence study. J Braz Chem Soc 16(5):944–950

    Article  CAS  Google Scholar 

  12. Lan K, Jiang X, Li Y, Wang L, Zhou J, Jiang Q, Ye L (2007) Quantitative determination of rosuvastatin in human plasma by ion pair liquid–liquid extraction using liquid chromatography with electrospray ionization tandem mass spectrometry. J Pharm Biomed Anal 44(2):540–546

    Article  CAS  Google Scholar 

  13. Macwan JS, Ionita IA, Akhlaghi F (2012) A simple assay for the simultaneous determination of rosuvastatin acid, rosuvastatin-5S-lactone, and N-desmethyl rosuvastatin in human plasma using liquid chromatography–tandem mass spectrometry (LC-MS/MS). Anal Bioanal Chem 402(3):1217–1227

    Article  CAS  PubMed Central  Google Scholar 

  14. Lee HK, Ho CS, Hu M, Tomlinson B, Wong CK (2013) Development and validation of a sensitive method for simultaneous determination of rosuvastatin and N-desmethyl rosuvastatin in human plasma using liquid chromatography/negative electrospray ionization/tandem mass spectrometry. Biomed Chromatogr 27(11):1369–1374

    Article  CAS  PubMed Central  Google Scholar 

  15. Shah Y, Iqbal Z, Ahmad L, Nazir S, Watson DG, Khuda F, Khan A, Khan MI, Khan A, Nasir F (2015) Determination of rosuvastatin and its metabolite N-desmethyl rosuvastatin in human plasma by liquid chromatography-high resolution mass spectrometry: method development, validation, and application to pharmacokinetic study. J Liq Chromatogr Relat Technol 38(8):863–873

    Article  CAS  Google Scholar 

  16. Elgawish MS, Soltan MK, Sebaiy MM (2019) An LC-MS/MS spectrometry method for the simultaneous determination of Rosuvastatin and Irbesartan in rat plasma: Insight into pharmacokinetic and drug-drug interaction studies. J Pharm Biomed Anal 174:226–234. https://doi.org/10.1016/j.jpba.2019.05.069

    Article  CAS  Google Scholar 

  17. Kim SH, Lee HL, Kim HL, Seo JB, Chung WY, Zo JH, Kim MA, Oh BH (2014) Efficacy and safety of fixed-dose combination of rosuvastatin and irbesartan in patients with dyslipidemia and hypertension. Atherosclerosis 235(2):e264. https://doi.org/10.1016/j.atherosclerosis.2014.05.792

    Article  Google Scholar 

  18. Prasaja B, Sasongko L, Harahap Y, Lusthom W, Grigg M (2009) Simultaneous quantification of losartan and active metabolite in human plasma by liquid chromatography–tandem mass spectrometry using irbesartan as internal standard. J Pharm Biomed Anal 49(3):862–867

    Article  CAS  PubMed Central  Google Scholar 

  19. Shah HJ, Kundlik ML, Patel NK, Subbaiah G, Patel DM, Suhagia BN, Patel CN (2009) Rapid determination of losartan and losartan acid in human plasma by multiplexed LC–MS/MS. J Sep Sci 32(20):3388–3394

    Article  CAS  PubMed Central  Google Scholar 

  20. Choi DH, Li C, Choi JS (2010) Effects of myricetin, an antioxidant, on the pharmacokinetics of losartan and its active metabolite, EXP-3174, in rats: possible role of cytochrome P450 3A4, cytochrome P450 2C9 and P-glycoprotein inhibition by myricetin. J Pharm Pharmacol 62(7):908–914

    Article  CAS  Google Scholar 

  21. Rao RN, Raju SS, Vali RM, Sankar GG (2012) Liquid chromatography–mass spectrometric determination of losartan and its active metabolite on dried blood spots. J Chromatogr B 902:47–54

    Article  CAS  Google Scholar 

  22. Karra VK, Pilli NR, Inamadugu JK, Rao JS (2012) Simultaneous determination of losartan, losartan acid and amlodipine in human plasma by LC-MS/MS and its application to a human pharmacokinetic study. Pharm Methods 3(1):18–25

    Article  PubMed Central  Google Scholar 

  23. Zhao Q, Wei J, Zhang H (2019) Effects of quercetin on the pharmacokinetics of losartan and its metabolite EXP3174 in rats. Xenobiotica 49(5):563–568

    Article  CAS  Google Scholar 

  24. Yasar Ü, Forslund-Bergengren C, Tybring G, Dorado P, Llerena A, Sjöqvist F, Eliasson E, Dahl ML (2002) Pharmacokinetics of losartan and its metabolite E-3174 in relation to the CYP2C9 genotype. Clin Pharmacol Ther 71(1):89–98

    Article  CAS  Google Scholar 

  25. Bioanalytical Method Validation Guidance for I US Department of Health and Human Services Food and Drug Administration (2018) Center for Drug Evaluation and Research (CDER). Center for Veterinary Medicine (CVM) May 2018 Silver Spring, Maryland. USA

  26. Zhang Y, Huo M, Zhou J, Xie S (2010) PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput Methods Programs Biomed 99(3):306–314

    Article  Google Scholar 

  27. Ghuman J, Zunszain PA, Petitpas I, Bhattacharya AA, Otagiri M, Curry S (2005) Structural basis of the drug-binding specificity of human serum albumin. J Mol Biol 353(1):38–52. https://doi.org/10.1016/j.jmb.2005.07.075

    Article  CAS  PubMed Central  Google Scholar 

  28. El Raey MA, El-Hagrassi AM, Osman AF, Darwish KM, Emam M (2019) Acalypha wilkesiana flowers: phenolic profiling, cytotoxic activity of their biosynthesized silver nanoparticles and molecular docking study for its constituents as Topoisomerase-I inhibitors. Biocatal Agric Biotechnol 20:101243. https://doi.org/10.1016/j.bcab.2019.101243

    Article  Google Scholar 

  29. The PyMOL Molecular Graphics System (2020) 2.0.6 edn. Schrödinger, LLC, New York, NY, 2016; Impact, Schrödinger, LLC, New York, NY, 2016; Prime, Schrödinger, LLC, New York, NY

  30. Narapusetti A, Bethanabhatla SS, Sockalingam A, Repaka N, Saritha V (2015) Simultaneous determination of rosuvastatin and amlodipine in human plasma using tandem mass spectrometry: application to disposition kinetics. J Adv Res 6(6):931–940

    Article  CAS  Google Scholar 

  31. Dias E, Hachey B, McNaughton C, Nian H, Yu C, Straka B, Brown NJ, Caprioli RM (2013) An LC-MS assay for the screening of cardiovascular medications in human samples. J Chromatogr B Anal Technol Biomed Life Sci 937:44–53. https://doi.org/10.1016/j.jchromb.2013.08.010

    Article  CAS  Google Scholar 

  32. Wei J, Ma W, Yao G, Jia Q, Cheng X, Ouyang H, Chang Y, Chen X, He J (2019) A high throughput HPLC-MS/MS method for antihypertensive drugs determination in plasma and its application on pharmacokinetic interaction study with Shuxuetong injection in rats. Biomed Res Int 2019:7537618. https://doi.org/10.1155/2019/7537618

    Article  CAS  PubMed Central  Google Scholar 

  33. Qiu C, Wen YG, Zhang M, Ni XJ (2011) Determination of imidaprilat in human plasma by SPE-LC-ESI-MS/MS and its application in pharmacokinetic study. Chin Pharm J 46:1432–1435

    CAS  Google Scholar 

  34. Cooper K, Martin P, Dane A, Warwick M, Schneck D, Cantarini M, Ejocp J (2002) The effect of fluconazole on the pharmacokinetics of rosuvastatin. Eur J Clin Pharmacol 58(8):527–531

    Article  CAS  Google Scholar 

  35. Ghuman J, Zunszain PA, Petitpas I, Bhattacharya AA, Otagiri M, Curry S, Jomb J (2005) Structural basis of the drug-binding specificity of human serum albumin. J Mol Biol 353(1):38–52

    Article  CAS  PubMed Central  Google Scholar 

  36. Petitpas I, Petersen CE, Ha C-E, Bhattacharya AA, Zunszain PA, Ghuman J, Bhagavan NV, Curry C, Pot J, Aos N (2003) Structural basis of albumin–thyroxine interactions and familial dysalbuminemic hyperthyroxinemia. Natl Acad Sci 100(11):6440–6445

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to staff member of Department of Pharmacology, Faculty of Pharmacy, Suez Canal University for support and help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdy Atef Wadie.

Ethics declarations

Conflict of interest

No conflicting financial interest is declared by the writers.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wadie, M.A., Kishk, S.M., Darwish, K.M. et al. Simultaneous Determination of Losartan and Rosuvastatin in Rat Plasma Using Liquid Chromatography–Tandem Mass Spectrometric Technique for Application into Pharmacokinetic and Drug–Drug Interaction Studies. Chromatographia 83, 1477–1494 (2020). https://doi.org/10.1007/s10337-020-03967-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-020-03967-z

Keywords

Navigation