Skip to main content
Log in

Heat Shock Protein HSP70 in Oxidative Stress in Apnea Patients

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We studied the level of heat shock protein HSP70 under conditions of oxidative stress in 47 patients with apnea. The control group included 13 healthy subjects without verified apnea. Blood serum, plasma, and erythrocyte hemolysate were used to determine LPO and anti-oxidant protection components by spectrophotometrical and spectrofluorometrical methods. HSP70 was assayed by ELISA. A direct relationship was established between the intensity of oxidative stress and HSP70 expression in patients with apnea. Quantitative determination of HSP70 can be used as a molecular marker in the early diagnosis and prognosis of the development of various pathological conditions in hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dysregulation Pathology. Kryzhanovskii GN, ed. Moscow, 2002.

  2. Kuznik BI, Linkova NS, Khavinson VKh. Heat shock proteins: Changes related to aging, development of thrombotic complications, and peptide regulation of the genome. Adv. Gerontology. 2012;2(3):175-186.

    Google Scholar 

  3. Madayeva IM, Kolesnikova LI, Petrova VA, Shevyrtalova ON, Sholokhov LF. Changes in the processes of the lipid peroxidation and antioxidant defense system in patients with obstructive sleep apnoea syndrome. Patol. Fiziol. Eksp. Ter. 2009;(3):24-27. Russian.

  4. Madaeva IM, Petrova VA, Kolesnikova LI, Shevyrtalova ON. Obstructive sleep apnea/hypopnea and lipid peroxidation. Pul’monologia. 2009;(2):65-69. Russian.

    Google Scholar 

  5. Nosareva OL, Ryazantseva NV, Stepovaya EA, Shakhristova EV, Stepanova EA, Gulaya VS. The role of heat shock proteins 27 and 70 in redox-dependent regulation of apoptosis in Jurkat tumor cells. Biomed. Khimiya. 2016;62(6):670-673. Russian.

    CAS  Google Scholar 

  6. Pastukhov YF, Ekimova IV, Khudik KA, Guzhova IV. Protein 70 kDa in the control of sleep and thermoregulation. J. Evol. Biochem. Physiol. 2008;44(1):74-81.

    CAS  Google Scholar 

  7. Kolesnikova LI, Grebenkina LA, Olifirenko VP, Osipova EV, Dolgikh MI, Kurashova NA, Darenskaya MA. State registration of computer programs. RU 2011617323. The program for calculating the coefficient of oxidative stress based on the parameters of lipid peroxidation-antioxidant protection in the blood. Registration data July 28, 2011.

  8. Dulin E, García-Barreno P, Guisasola MC. Extracellular heat shock protein 70 (HSPA1A) and classical vascular risk factors in a general population. Cell Stress Chaperones. 2010;15(6):929-937.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gessi S, Merighi S, Bencivenni S, Battistello E, Vincenzi F, Setti S, Cadossi M, Borea PA, Cadossi R, Varani K. Pulsed electromagnetic field and relief of hypoxia-induced neuronal cell death: the signaling pathway. J. Cell. Physiol. 2019. Jan 17. https://doi.org/10.1002/jcp.28149

  10. Hayashi M, Fujimoto K, Urushibata K, Takamizawa A, Kinoshita O, Kubo K. Hypoxia-sensitive molecules may modulate the development of atherosclerosis in sleep apnoea syndrome. Respirology. 2006;11(1):24-31.

    PubMed  Google Scholar 

  11. Kolesnikova LI, Madaeva IM, Semenova NV, Vlasov BY, Grebenkina LA, Darenskaya MA, Dolgikh MI. Antioxidant potential of the blood in men with obstructive sleep breathing disorders. Bull. Exp. Biol. Med. 2013;154(6):731-733.

    CAS  PubMed  Google Scholar 

  12. Lavie L, Dyugovskaya L, Golan-Shany O, Lavie P. Heat-shock protein 70: expression in monocytes of patients with sleep apnoea and association with oxidative stress and tumor necrosis factor-alpha. Eur. Sleep Res. Soc. 2009;19(1, Pt 2):139-147.

    Google Scholar 

  13. Qu B, Jia Y, Liu Y, Wang H, Ren G, Wang H. The detection and role of heat shock protein 70 in various nondisease conditions and disease conditions: a literature review. Cell Stress Chaperones. 2015;20(6):885-892.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Rane A, Rajagopalan S, Ahuja M, Thomas B, Chinta SJ, Andersen JK. Hsp90 Co-chaperone p23 contributes to dopaminergic mitochondrial stress via stabilization of PHD2: implications for Parkinson’s disease. Neurotoxicology. 2018;65:166-173.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang Y, Jia C, Li QS, Xie CY, Zhang N, Qu Y. BAG-1L Protects SH-SY5Y neuroblastoma cells against hypoxia/re-oxygenation through up-regulating HSP70 and activating PI3K/AKT signaling pathway. Neurochem. Res. 2017;42(10):2861-2868.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Madaeva.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 169, No. 5, pp. 627-630, May, 2020

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madaeva, I.M., Kurashova, N.A., Semenova, N.V. et al. Heat Shock Protein HSP70 in Oxidative Stress in Apnea Patients. Bull Exp Biol Med 169, 695–697 (2020). https://doi.org/10.1007/s10517-020-04957-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-020-04957-9

Key Words

Navigation