Skip to main content

Advertisement

Log in

Supercritical CO2 extraction of antioxidants from Paulownia elongata x fortunei leaves

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Paulownia wood demand is increasing, but other parts of the tree remain underused. The leaves have medicinal properties, and their processing with a clean technology was explored. Supercritical fluid extraction (SFE) was proposed for the production of extracts from Paulownia elongata x fortunei leaves. Three isotherms (35 °C, 45 °C, and 55 °C) were studied in the pressure range of 10–30 MPa to assess their influence on the extraction yield and antiradical properties. The use of ethanol as cosolvent was also evaluated. A global extraction yield of 4 g extract /100 g of leaves was obtained at 30 MPa and 45 °C using 10% ethanol (w/w) as modifier; the last fractions reached up to 0.30 g Trolox eq./g extract. Serial extractions with different concentrations of ethanol (60, 70, 80, and 96%) were performed. The global yield obtained with 70% ethanol in three stages was 32.9 g extract/100 g leaves, and the antiradical capacity of the first stage extract was equivalent to 0.4 g Trolox/g extract. Extraction kinetics was studied, and overall extraction curves were represented using Sovová’s model.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data presented in this work is available.

References

  1. Alexandre AMRC, Serra AT, Matias AA, Duarte CMM, Bronze MR (2020) Supercritical fluid extraction of Arbutus unedo distillate residues—impact of process conditions on antiproliferative response of extracts. J CO2 Util 37:29–38. https://doi.org/10.1016/j.jcou.2019.11.002

    Article  Google Scholar 

  2. He T, Vaidya B, Perry Z, Parajuli P, Joshee N (2016) Paulownia as a medicinal tree: traditional uses and current advances. European J Med Plants 14:1–15. https://doi.org/10.9734/ejmp/2016/25170

    Article  Google Scholar 

  3. Jiménez L, Rodríguez A, Ferrer JL et al (2005) Paulownia, a fast-growing plant, as a raw material for paper manufacturing | La Paulownia: Una planta de rápido crecimiento como materia prima para la fabricación de papel. Afinidad 62:100–105

    Google Scholar 

  4. Feria MJ, López F, García JC et al (2009) Energy and products by hydrolysis from forestry and industrial crops | Energía y productos de hidrólisis a partir de cultivos industriales y forestales. Afinidad 66:458–464

    Google Scholar 

  5. Singh MP, Park KH, Khaket TP, Kang SC (2018) CJK-7, a novel flavonoid from Paulownia tomentosa triggers cell death cascades in HCT-116 human colon carcinoma cells via redox signaling. Anti Cancer Agents Med Chem 18:428–437. https://doi.org/10.2174/1871520617666171026170009

    Article  Google Scholar 

  6. Móricz ÁM, Ott PG, Knaś M, Długosz E, Krüzselyi D, Kowalska T, Sajewicz M (2019) Antibacterial potential of the phenolics extracted from the Paulownia tomentosa L. leaves as studied with use of high-performance thin-layer chromatography combined with direct bioautography. J Liq Chromatogr Relat Technol 42:282–289. https://doi.org/10.1080/10826076.2019.1585604

    Article  Google Scholar 

  7. Pontaza-Licona YS, Ramos-Jacques AL, Cervantes-Chavez JA, López-Miranda JL, Ruíz-Baltazar ÁJ, Maya-Cornejo J, Rodríguez-Morales AL, Esparza R, Estevez M, Pérez R, Hernandez-Martínez AR (2019) Alcoholic extracts from Paulownia tomentosa leaves for silver nanoparticles synthesis. Results Phys 12:1670–1679. https://doi.org/10.1016/j.rinp.2019.01.082

    Article  Google Scholar 

  8. Zhang D l, Li XQ (2011) Studies on the chemical constituents from the leave of Paulownia tomentosa. J Chinese Med Mater 34:232–234

    Google Scholar 

  9. Schneiderová K, Šmejkal K (2015) Phytochemical profile of Paulownia tomentosa (Thunb). Steud. Phytochem Rev 14:799–833. https://doi.org/10.1007/s11101-014-9376-y

    Article  Google Scholar 

  10. Araújo MN, Azevedo AQPL, Hamerski F et al (2019) Enhanced extraction of spent coffee grounds oil using high-pressure CO2 plus ethanol solvents. Ind Crops Prod 141. https://doi.org/10.1016/j.indcrop.2019.111723

  11. Díaz-Reinoso B, Moure A, Domínguez H, Parajó JC (2006) Supercritical CO2 extraction and purification of compounds with antioxidant activity. J Agric Food Chem 54:2441–2469. https://doi.org/10.1021/jf052858j

    Article  Google Scholar 

  12. Vardanega R, Prado JM, Meireles MAA (2015) Adding value to agri-food residues by means of supercritical technology. J Supercrit Fluids 96:217–227. https://doi.org/10.1016/j.supflu.2014.09.029

    Article  Google Scholar 

  13. Tamkutė L, Liepuoniūtė R, Pukalskienė M, Venskutonis PR (2020) Recovery of valuable lipophilic and polyphenolic fractions from cranberry pomace by consecutive supercritical CO2. J Supercrit Fluids 159:104755. https://doi.org/10.1016/j.supflu.2020.104755

    Article  Google Scholar 

  14. Sovová H (1994) Rate of the vegetable oil extraction with supercritical CO2-I. Modelling of extraction curves. Chem Eng Sci 49:409–414. https://doi.org/10.1016/0009-2509(94)87012-8

    Article  Google Scholar 

  15. Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    Google Scholar 

  16. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3

    Article  Google Scholar 

  17. Ahmad-Qasem MH, Cánovas J, Barrajón-Catalán E, Micol V, Cárcel JA, García-Pérez JV (2013) Kinetic and compositional study of phenolic extraction from olive leaves (var. Serrana) by using power ultrasound. Innov Food Sci Emerg Technol 17:120–129. https://doi.org/10.1016/j.ifset.2012.11.008

    Article  Google Scholar 

  18. Jang M, Lee YC, Hong HD et al (2017) Anti-oxidative and anti-inflammatory activities of devil’s club (Oplopanax horridus) leaves. Food Sci Biotechnol 26:213–220. https://doi.org/10.1007/s10068-017-0029-y

    Article  Google Scholar 

  19. Santos KA, Klein EJ, Fiorese ML, Palú F, da Silva C, da Silva EA (2020) Extraction of Morus alba leaves using supercritical CO2 and ultrasound-assisted solvent: evaluation of β-sitosterol content. J Supercrit Fluids 159:104752. https://doi.org/10.1016/j.supflu.2020.104752

    Article  Google Scholar 

  20. Palsikowski PA, Besen LM, Santos KA et al (2019) Supercritical CO2 oil extraction from Bauhinia forficata link subsp. pruinosa leaves: composition, antioxidant activity and mathematical modeling. J Supercrit Fluids 153:104588. https://doi.org/10.1016/j.supflu.2019.104588

    Article  Google Scholar 

  21. de Souza ARC, Guedes AR, Folador Rodriguez JM, Bombardelli MCM, Corazza ML (2018) Extraction of Arctium lappa leaves using supercritical CO2 + ethanol: kinetics, chemical composition, and bioactivity assessments. J Supercrit Fluids 140:137–146. https://doi.org/10.1016/j.supflu.2018.06.011

  22. Cadena-Carrera S, Tramontin DP, Bella Cruz A et al (2019) Biological activity of extracts from guayusa leaves (Ilex guayusa Loes.) obtained by supercritical CO2 and ethanol as cosolvent. J Supercrit Fluids 152:104543. https://doi.org/10.1016/j.supflu.2019.104543

    Article  Google Scholar 

  23. Braga MEM, Quispe-Condori S, Rosa PTV, Meireles MAA (2018) Mathematical modelling of turmeric compounds extraction using high pressurized solvents mixture. J Supercrit Fluids 140:348–355. https://doi.org/10.1016/j.supflu.2018.07.014

    Article  Google Scholar 

  24. Confortin TC, Todero I, Canabarro NI, Luft L, Ugalde GA, Neto JRC, Mazutti MA, Zabot GL, Tres MV (2019) Supercritical CO2 extraction of compounds from different aerial parts of Senecio brasiliensis: mathematical modeling and effects of parameters on extract quality. J Supercrit Fluids 153:104589. https://doi.org/10.1016/j.supflu.2019.104589

    Article  Google Scholar 

  25. Barzotto ILM, Santos KA, da Silva EA, Sene AC, da Silva NS, Vieira L (2019) Supercritical extraction of Eugenia involucrata leaves: influence of operating conditions on yield and Α-tocopherol content. J Supercrit Fluids 143:55–63. https://doi.org/10.1016/j.supflu.2018.08.003

    Article  Google Scholar 

  26. Sodeifian G, Ghorbandoost S, Sajadian SA, Saadati Ardestani N (2016) Extraction of oil from Pistacia khinjuk using supercritical carbon dioxide: experimental and modeling. J Supercrit Fluids 110:265–274. https://doi.org/10.1016/j.supflu.2015.12.004

    Article  Google Scholar 

  27. Verónico Sánchez FJ, Solis OE, Zamilpa A et al (2020) Extraction of Galphimines from Galphimia glauca with supercritical carbon dioxide. Molecules 25:477. https://doi.org/10.3390/molecules25030477

    Article  Google Scholar 

  28. Ciftci ON, Calderon J, Temelli F (2012) Supercritical carbon dioxide extraction of corn distiller’s dried grains with solubles: experiments and mathematical modeling. J Agric Food Chem 60:12482–12490. https://doi.org/10.1021/jf302932w

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Ángel Álvarez for his help in collecting samples and Sheila Gómez for her technical assistance.

Code availability

Not applicable.

Funding

This work was funded by the Ministry of Economy, Industry and Competitiveness of Spain through the project CTM2015-68503-R and by the PIF grant BES-2016-076840.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Paula Rodríguez Seoane and Beatriz Díaz Reinoso. The first draft of the manuscript was written by Herminia Domínguez, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Paula Rodríguez-Seoane.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Seoane, P., Díaz-Reinoso, B. & Domínguez, H. Supercritical CO2 extraction of antioxidants from Paulownia elongata x fortunei leaves. Biomass Conv. Bioref. 12, 3985–3993 (2022). https://doi.org/10.1007/s13399-020-01022-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-01022-3

Keywords

Navigation