Skip to main content

Advertisement

Log in

Development and Applications of Attached Growth System for Microalgae Biomass Production

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

With realizing the potential of algal biomass as a good natural resource for the harnessing of valuable bioproducts, algal biomass production has gained a lot of interest in recent years. However, due to some limitations such as low harvesting efficiency, higher nutrient supply, and high water requirement, the production of algal biomass is uneconomical. Over the past several years, researchers are continuously working on growing algae as a biofilm for easy microalgae harvesting, concentration of algal biomass to a great extent, and requiring less quantity of water as compared to other microalgae cultivation methods. Most of the documented studies have been carried out on either use of algal biomass for tertiary treatment of wastewater or cultivation and harvesting of algal biomass for biofuel production. Limited research studies have documented other applications of the algal biofilm system. The present review paper summarizes the current knowledge on various factors affecting microalgae growth, development of algal biofilm, and operation of algal biofilm systems to help properly understand and optimize these factors for better economics, more positive environmental impacts, and successful potential applications of the attached growth systems. The important factors include the structure of algal biofilms, EPS matrix, supporting materials, nutrient availability, environmental conditions, and biofilm thickness and harvesting frequency. The potential applications such as wastewater treatment, CO2 sequestration, microalgae–microbial fuel cell, large-scale biomass production, and water quality improvement are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Singh G, Patidar SK (2018) Microalgae harvesting techniques: a review. J Environ Manag 217:499–508. https://doi.org/10.1016/j.jenvman.2018.04.010

    Article  Google Scholar 

  2. Singh G, Patidar SK (2020) Mixed culture microalgae removal for water quality improvement using Chitosan. Canad J Civ Eng, (ja)

  3. Singh G, Patidar SK (2020) Water quality restoration by harvesting mixed culture microalgae using Moringa oleifera. Water Environ Res. https://doi.org/10.1002/wer.1322

  4. Pugazhendhi A, Shobana S, Bakonyi P, Nemestothy N, Xia A, Banu JR, Kumar G (2019) A review on chemical mechanism of microalgae flocculation via polymers. Biotechnol Rep (Amst) 21:e00302. https://doi.org/10.1016/j.btre.2018.e00302

    Article  Google Scholar 

  5. Kumar BR, Deviram G, Mathimani T, Duc PA, Pugazhendhi A (2019) Microalgae as rich source of polyunsaturated fatty acids. Biocatal Agric Biotechnol 17:583–588. https://doi.org/10.1016/j.bcab.2019.01.017

    Article  Google Scholar 

  6. Milledge JJ (2010) Commercial application of microalgae other than as biofuels: a brief review. Rev Environ Sci Biotechnol 10(1):31–41. https://doi.org/10.1007/s11157-010-9214-7

    Article  Google Scholar 

  7. Mathimani T, Baldinelli A, Rajendran K, Prabakar D, Matheswaran M, van Leeuwen RP, Pugazhendhi A (2019) Review on cultivation and thermochemical conversion of microalgae to fuels and chemicals: process evaluation and knowledge gaps. J Clean Prod 208:1053–1064

    Article  CAS  Google Scholar 

  8. Shanmugam S, Mathimani T, Anto S, Sudhakar MP, Kumar SS, Pugazhendhi A (2020) Cell density, Lipidomic profile, and fatty acid characterization as selection criteria in bioprospecting of microalgae and cyanobacterium for biodiesel production. Bioresour Technol 304:123061. https://doi.org/10.1016/j.biortech.2020.123061

    Article  CAS  PubMed  Google Scholar 

  9. Nagappan S, Devendran S, Tsai P-C, Jayaraman H, Alagarsamy V, Pugazhendhi A, Ponnusamy VK (2020) Metabolomics integrated with transcriptomics and proteomics: evaluation of systems reaction to nitrogen deficiency stress in microalgae. Process Biochem 91:1–14. https://doi.org/10.1016/j.procbio.2019.11.027

    Article  CAS  Google Scholar 

  10. Moreno Osorio JH, Pinto G, Pollio A, Frunzo L, Lens PNL, Esposito G (2019) Start-up of a nutrient removal system using Scenedesmus vacuolatus and Chlorella vulgaris biofilms. Bioresources and Bioprocessing 6(1). https://doi.org/10.1186/s40643-019-0259-3

  11. Gross M, Henry W, Michael C, Wen Z (2013) Development of a rotating algal biofilm growth system for attached microalgae growth with in situ biomass harvest. Bioresour Technol 150:195–201. https://doi.org/10.1016/j.biortech.2013.10.016

    Article  CAS  PubMed  Google Scholar 

  12. Ahn C, Song H, Lee S, Oh J, Ahn H, Park J-R, Lee J, Joo J (2013) Effects of water velocity and specific surface area on filamentous periphyton biomass in an artificial stream mesocosm. Water. 5(4):1723–1740. https://doi.org/10.3390/w5041723

    Article  Google Scholar 

  13. Berner F, Heimann K, Sheehan M (2014) Microalgal biofilms for biomass production. J Appl Phycol 27(5):1793–1804. https://doi.org/10.1007/s10811-014-0489-x

    Article  CAS  Google Scholar 

  14. Choudhary P, Bhattacharya A, Prajapati SK, Kaushik P, Malik A (2015) Phycoremediation-coupled biomethanation of microalgal biomass. In: Handbook of Marine Microalgae. pp 483-499. doi:https://doi.org/10.1016/b978-0-12-800776-1.00032-7

  15. Miranda AF, Ramkumar N, Andriotis C, Holtkemeier T, Yasmin A, Rochfort S, Wlodkowic D, Morrison P, Roddick F, Spangenberg G, Lal B, Subudhi S, Mouradov A (2017) Applications of microalgal biofilms for wastewater treatment and bioenergy production. Biotechnol Biofuels 10:120. https://doi.org/10.1186/s13068-017-0798-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gross M, Jarboe D, Wen Z (2015) Biofilm-based algal cultivation systems. Appl Microbiol Biotechnol 99(14):5781–5789. https://doi.org/10.1007/s00253-015-6736-5

    Article  CAS  PubMed  Google Scholar 

  17. Schnurr PJ, Allen DG (2015) Factors affecting algae biofilm growth and lipid production: a review. Renew Sust Energ Rev 52:418–429. https://doi.org/10.1016/j.rser.2015.07.090

    Article  CAS  Google Scholar 

  18. Kesaano M, Sims RC (2014) Algal biofilm based technology for wastewater treatment. Algal Res 5:231–240. https://doi.org/10.1016/j.algal.2014.02.003

    Article  Google Scholar 

  19. Choudhary P, Malik A, Pant KK (2017) Algal biofilm systems: an answer to algal biofuel dilemma. In: Algal Biofuels. pp 77-96. doi:https://doi.org/10.1007/978-3-319-51010-1_4

  20. Flemming HC, Neu TR, Wozniak DJ (2007) The EPS matrix: the “house of biofilm cells”. J Bacteriol 189(22):7945–7947. https://doi.org/10.1128/JB.00858-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wingender J, Jaeger K-E, Flemming H-C (1999) Interaction between extracellular polysaccharides and enzymes. In: Microbial extracellular polymeric substances. Springer, pp 231-251

  22. Riding RJS (2000) Microbial carbonates: the geological record of calcified bacterial–algal mats and biofilms. Sedimentology 47:179–214

    Article  CAS  Google Scholar 

  23. Kives J, Orgaz B, Sanjose C (2006) Polysaccharide differences between planktonic and biofilm-associated EPS from Pseudomonas fluorescens B52. Colloids Surf B: Biointerfaces 52(2):123–127. https://doi.org/10.1016/j.colsurfb.2006.04.018

    Article  CAS  PubMed  Google Scholar 

  24. Hoffman M, Decho AW (1999) Extracellular enzymes within microbial biofilms and the role of the extracellular polymer matrix. In: Microbial extracellular polymeric substances. Springer, pp 217-230

  25. O'Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54(1):49–79

    Article  CAS  Google Scholar 

  26. Cooksey K, Wigglesworth-Cooksey B (1992) The design of antifouling surfaces: background and some approaches. In: Biofilms—science and technology. Springer, pp 529-549

  27. Domozych DS, Elliott L, Kiemle SN, Gretz MR (2007) Pleurotaenium trabecula, a desmid of wetland biofilms: the extracellular matrix and adhesion mechanisms1. J Phycol 43(5):1022–1038. https://doi.org/10.1111/j.1529-8817.2007.00389.x

    Article  CAS  Google Scholar 

  28. Shen Y, Xu X, Zhao Y, Lin X (2014) Influence of algae species, substrata and culture conditions on attached microalgal culture. Bioprocess Biosyst Eng 37(3):441–450. https://doi.org/10.1007/s00449-013-1011-6

    Article  CAS  PubMed  Google Scholar 

  29. Becker K (1996) Exopolysaccharide production and attachment strength of bacteria and diatoms on substrates with different surface tensions. Microb Ecol 32:23–33. https://doi.org/10.1007/BF00170104

    Article  CAS  PubMed  Google Scholar 

  30. Lubarsky HV, Hubas C, Chocholek M, Larson F, Manz W, Paterson DM, Gerbersdorf SU (2010) The stabilisation potential of individual and mixed assemblages of natural bacteria and microalgae. PLoS One 5(11):e13794. https://doi.org/10.1371/journal.pone.0013794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Evans LV (2003) Biofilms: recent advances in their study and control. CRC press, Boca Raton

    Google Scholar 

  32. Bruno L, Di Pippo F, Antonaroli S, Gismondi A, Valentini C, Albertano P (2012) Characterization of biofilm-forming cyanobacteria for biomass and lipid production. J Appl Microbiol 113(5):1052–1064. https://doi.org/10.1111/j.1365-2672.2012.05416.x

    Article  CAS  PubMed  Google Scholar 

  33. Di Pippo F, Ellwood NTW, Gismondi A, Bruno L, Rossi F, Magni P, De Philippis R (2013) Characterization of exopolysaccharides produced by seven biofilm-forming cyanobacterial strains for biotechnological applications. J Appl Phycol 25(6):1697–1708. https://doi.org/10.1007/s10811-013-0028-1

    Article  CAS  Google Scholar 

  34. Gismondi A, Pippo FD, Bruno L, Antonaroli S, Congestri R (2016) Phosphorus removal coupled to bioenergy production by three cyanobacterial isolates in a biofilm dynamic growth system. Int J Phytoremediation 18(9):869–876. https://doi.org/10.1080/15226514.2016.1156640

    Article  CAS  PubMed  Google Scholar 

  35. Guzzon A, Bohn A, Diociaiuti M, Albertano P (2008) Cultured phototrophic biofilms for phosphorus removal in wastewater treatment. Water Res 42(16):4357–4367. https://doi.org/10.1016/j.watres.2008.07.029

    Article  CAS  PubMed  Google Scholar 

  36. Zippel B, Rijstenbil J, Neu TR (2007) A flow-lane incubator for studying freshwater and marine phototrophic biofilms. J Microbiol Methods 70(2):336–345. https://doi.org/10.1016/j.mimet.2007.05.013

    Article  CAS  PubMed  Google Scholar 

  37. Schultze LKP, Simon M-V, Li T, Langenbach D, Podola B, Melkonian M (2015) High light and carbon dioxide optimize surface productivity in a Twin-Layer biofilm photobioreactor. Algal Res 8:37–44. https://doi.org/10.1016/j.algal.2015.01.007

    Article  Google Scholar 

  38. Boelee NC, Temmink H, Janssen M, Buisman CJ, Wijffels RH (2011) Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms. Water Res 45(18):5925–5933. https://doi.org/10.1016/j.watres.2011.08.044

    Article  CAS  PubMed  Google Scholar 

  39. Posadas E, Garcia-Encina PA, Soltau A, Dominguez A, Diaz I, Munoz R (2013) Carbon and nutrient removal from centrates and domestic wastewater using algal-bacterial biofilm bioreactors. Bioresour Technol 139:50–58. https://doi.org/10.1016/j.biortech.2013.04.008

    Article  CAS  PubMed  Google Scholar 

  40. Orandi S, Lewis DM, Moheimani NR (2012) Biofilm establishment and heavy metal removal capacity of an indigenous mining algal-microbial consortium in a photo-rotating biological contactor. J Ind Microbiol Biotechnol 39(9):1321–1331. https://doi.org/10.1007/s10295-012-1142-9

    Article  CAS  PubMed  Google Scholar 

  41. Ozkan A, Kinney K, Katz L, Berberoglu H (2012) Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor. Bioresour Technol 114:542–548. https://doi.org/10.1016/j.biortech.2012.03.055

    Article  CAS  PubMed  Google Scholar 

  42. Adey W, Luckett C, Jensen K (1993) Phosphorus removal from natural waters using controlled algal production. Restor Ecol 1(1):29–39

    Article  Google Scholar 

  43. Craggs RJ, Adey WH, Jessup BK, Oswald WJ (1996) A controlled stream mesocosm for tertiary treatment of sewage. Ecol Eng 6(1-3):149–169

    Article  Google Scholar 

  44. Craggs RJ, Adey WH, Jenson KR, John MSS, Green FB, Oswald WJ (1996) Phosphorus removal from wastewater using an algal turf scrubber. Water Sci Technol 33(7):191–198

    Article  CAS  Google Scholar 

  45. Mulbry WW, Wilkie ACJJAP (2001) Growth of benthic freshwater algae on dairy manures. J Appl Phycol 13(4):301–306

    Article  Google Scholar 

  46. Mulbry W, Westhead EK, Pizarro C, Sikora L (2005) Recycling of manure nutrients: use of algal biomass from dairy manure treatment as a slow release fertilizer. Bioresour Technol 96(4):451–458. https://doi.org/10.1016/j.biortech.2004.05.026

    Article  CAS  PubMed  Google Scholar 

  47. Mulbry W, Kondrad S, Buyer J (2008) Treatment of dairy and swine manure effluents using freshwater algae: fatty acid content and composition of algal biomass at different manure loading rates. J Appl Phycol 20(6):1079–1085. https://doi.org/10.1007/s10811-008-9314-8

    Article  Google Scholar 

  48. Mulbry W, Kondrad S, Pizarro C, Kebede-Westhead E (2008) Treatment of dairy manure effluent using freshwater algae: algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers. Bioresour Technol 99(17):8137–8142. https://doi.org/10.1016/j.biortech.2008.03.073

    Article  CAS  PubMed  Google Scholar 

  49. Johnson MB, Wen Z (2010) Development of an attached microalgal growth system for biofuel production. Appl Microbiol Biotechnol 85(3):525–534. https://doi.org/10.1007/s00253-009-2133-2

    Article  CAS  PubMed  Google Scholar 

  50. Kebede-Westhead E, Pizarro C, Mulbry WW (2004) Treatment of dairy manure effluent using freshwater algae: elemental composition of algal biomass at different manure loading rates. J Agric Food Chem 52(24):7293–7296

    Article  CAS  Google Scholar 

  51. Kebede-Westhead E, Pizarro C, Mulbry WW (2006) Treatment of swine manure effluent using freshwater algae: production, nutrient recovery, and elemental composition of algal biomass at four effluent loading rates. J Appl Phycol 18(1):41–46. https://doi.org/10.1007/s10811-005-9012-8

    Article  Google Scholar 

  52. Pizarro C, Kebede-Westhead E, Mulbry W (2002) Nitrogen and phosphorus removal rates using small algal turfs grown with dairy manure. J Appl Phycol 14(6):469–473

    Article  CAS  Google Scholar 

  53. Wilkie AC, Mulbry WW (2002) Recovery of dairy manure nutrients by benthic freshwater algae. Bioresour Technol 84(1):81–91

    Article  CAS  Google Scholar 

  54. Blanken W, Janssen M, Cuaresma M, Libor Z, Bhaiji T, Wijffels RH (2014) Biofilm growth of Chlorella sorokiniana in a rotating biological contactor based photobioreactor. Biotechnol Bioeng 111(12):2436–2445. https://doi.org/10.1002/bit.25301

    Article  CAS  PubMed  Google Scholar 

  55. Sekar R, Venugopalan V, Satpathy K, Nair K, Rao V (2004) Laboratory studies on adhesion of microalgae to hard substrates. In: Asian Pacific Phycology in the 21st Century: Prospects and Challenges. Springer, pp 109-116

  56. Sathananthan S, Genin SN, Aitchison JS, Allen DG Micro-structured surfaces for algal biofilm growth. In: Micro/Nano Materials, Devices, and Systems, 2013. International Society for Optics and Photonics, p 892350

  57. Shen Y, Chen C, Chen W, Xu X (2014) Attached culture of Nannochloropsis oculata for lipid production. Bioprocess Biosyst Eng 37(9):1743–1748. https://doi.org/10.1007/s00449-014-1147-z

    Article  CAS  PubMed  Google Scholar 

  58. Murphy TE, Berberoglu H (2014) Flux balancing of light and nutrients in a biofilm photobioreactor for maximizing photosynthetic productivity. Biotechnol Prog 30(2):348–359. https://doi.org/10.1002/btpr.1881

    Article  CAS  PubMed  Google Scholar 

  59. Cheng P, Ji B, Gao L, Zhang W, Wang J, Liu T (2013) The growth, lipid and hydrocarbon production of Botryococcus braunii with attached cultivation. Bioresour Technol 138:95–100. https://doi.org/10.1016/j.biortech.2013.03.150

    Article  CAS  PubMed  Google Scholar 

  60. Ji C, Wang J, Zhang W, Liu J, Wang H, Gao L, Liu T (2013) An applicable nitrogen supply strategy for attached cultivation of Aucutodesmus obliquus. J Appl Phycol 26(1):173–180. https://doi.org/10.1007/s10811-013-0115-3

    Article  CAS  Google Scholar 

  61. Liu T, Wang J, Hu Q, Cheng P, Ji B, Liu J, Chen Y, Zhang W, Chen X, Chen L, Gao L, Ji C, Wang H (2013) Attached cultivation technology of microalgae for efficient biomass feedstock production. Bioresour Technol 127:216–222. https://doi.org/10.1016/j.biortech.2012.09.100

    Article  CAS  PubMed  Google Scholar 

  62. Naumann T, Çebi Z, Podola B, Melkonian M (2012) Growing microalgae as aquaculture feeds on twin-layers: a novel solid-state photobioreactor. J Appl Phycol 25(5):1413–1420. https://doi.org/10.1007/s10811-012-9962-6

    Article  CAS  Google Scholar 

  63. Wang J, Liu J, Liu T (2015) The difference in effective light penetration may explain the superiority in photosynthetic efficiency of attached cultivation over the conventional open pond for microalgae. Biotechnol Biofuels 8:49. https://doi.org/10.1186/s13068-015-0240-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shi J, Podola B, Melkonian M (2014) Application of a prototype-scale Twin-Layer photobioreactor for effective N and P removal from different process stages of municipal wastewater by immobilized microalgae. Bioresour Technol 154:260–266. https://doi.org/10.1016/j.biortech.2013.11.100

    Article  CAS  PubMed  Google Scholar 

  65. Abe K, Matsumura I, Imamaki A, Hirano M (2003) Removal of inorganic nitrogen sources from water by the algal biofilm of the aerial microalga Trentepohlia aurea. World J Microbiol Biotechnol 19(3):325–328

    Article  CAS  Google Scholar 

  66. Boelee NC, Janssen M, Temmink H, Shrestha R, Buisman CJ, Wijffels RH (2014) Nutrient removal and biomass production in an outdoor pilot-scale phototrophic biofilm reactor for effluent polishing. Appl Biochem Biotechnol 172(1):405–422. https://doi.org/10.1007/s12010-013-0478-6

    Article  CAS  PubMed  Google Scholar 

  67. Boelee NC, Janssen M, Temmink H, Taparavičiūtė L, Khiewwijit R, Jánoska Á, Buisman CJN, Wijffels RH (2013) The effect of harvesting on biomass production and nutrient removal in phototrophic biofilm reactors for effluent polishing. J Appl Phycol 26(3):1439–1452. https://doi.org/10.1007/s10811-013-0178-1

    Article  CAS  Google Scholar 

  68. Zhang L, Chen L, Wang J, Chen Y, Gao X, Zhang Z, Liu T (2015) Attached cultivation for improving the biomass productivity of Spirulina platensis. Bioresour Technol 181:136–142. https://doi.org/10.1016/j.biortech.2015.01.025

    Article  CAS  PubMed  Google Scholar 

  69. Choudhary P, Prajapati SK, Kumar P, Malik A, Pant KK (2017) Development and performance evaluation of an algal biofilm reactor for treatment of multiple wastewaters and characterization of biomass for diverse applications. Bioresour Technol 224:276–284. https://doi.org/10.1016/j.biortech.2016.10.078

    Article  CAS  PubMed  Google Scholar 

  70. Christenson LB, Sims RC (2012) Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuels by-products. Biotechnol Bioeng 109(7):1674–1684. https://doi.org/10.1002/bit.24451

    Article  CAS  PubMed  Google Scholar 

  71. Gross M, Mascarenhas V, Wen Z (2015) Evaluating algal growth performance and water use efficiency of pilot-scale revolving algal biofilm (RAB) culture systems. Biotechnol Bioeng 112(10):2040–2050. https://doi.org/10.1002/bit.25618

    Article  CAS  PubMed  Google Scholar 

  72. Iman Shayan S, Agblevor FA, Bertin L, Sims RC (2016) Hydraulic retention time effects on wastewater nutrient removal and bioproduct production via rotating algal biofilm reactor. Bioresour Technol 211:527–533. https://doi.org/10.1016/j.biortech.2016.03.104

    Article  CAS  PubMed  Google Scholar 

  73. Shen Y, Zhu W, Chen C, Nie Y, Lin X (2016) Biofilm formation in attached microalgal reactors. Bioprocess Biosyst Eng 39(8):1281–1288. https://doi.org/10.1007/s00449-016-1606-9

    Article  CAS  PubMed  Google Scholar 

  74. Finlay JA, Callow ME, Ista LK, Lopez GP, Callow JA (2002) The influence of surface wettability on the adhesion strength of settled spores of the green alga Enteromorpha and the diatom Amphora. Integr Comp Biol 42(6):1116–1122

    Article  Google Scholar 

  75. Ozkan A, Berberoglu H (2013) Adhesion of algal cells to surfaces. Biofouling 29(4):469–482. https://doi.org/10.1080/08927014.2013.782397

    Article  PubMed  Google Scholar 

  76. Genin SN, Stewart Aitchison J, Grant Allen D (2014) Design of algal film photobioreactors: material surface energy effects on algal film productivity, colonization and lipid content. Bioresour Technol 155:136–143. https://doi.org/10.1016/j.biortech.2013.12.060

    Article  CAS  PubMed  Google Scholar 

  77. Irving TE, Allen DG (2011) Species and material considerations in the formation and development of microalgal biofilms. Appl Microbiol Biotechnol 92(2):283–294. https://doi.org/10.1007/s00253-011-3341-0

    Article  CAS  PubMed  Google Scholar 

  78. Cao J, Yuan W, Pei Z, Davis T, Cui Y, Beltran M (2009) A preliminary study of the effect of surface texture on algae cell attachment for a mechanical-biological energy manufacturing system. J Manuf Sci Eng 131(6):064505

    Article  Google Scholar 

  79. Hillebrand H, Kahlert M (2001) Effect of grazing and nutrient supply on periphyton biomass and nutrient stoichiometry in habitats of different productivity. 46(8):1881–1898

  80. Levich A (1996) The role of nitrogen-phosphorus ratio in selecting for dominance of phytoplankton by cyanobacteria or green algae and its application to reservoir management. J Aquat Ecosyst Health 5(1):55–61

    Article  Google Scholar 

  81. Dodds W, Smith V (2016) Nitrogen, phosphorus, and eutrophication in streams. Inland Waters 6(2):155–164. https://doi.org/10.5268/iw-6.2.909

    Article  CAS  Google Scholar 

  82. Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112. https://doi.org/10.1002/bit.22033

    Article  CAS  PubMed  Google Scholar 

  83. Shifrin NS, Chisholm SW (1981) Phytoplankton lipids: interspecific differences and effects of nitrate, silicate and light-dark cycles 1. J Phycol 17(4):374–384

    Article  CAS  Google Scholar 

  84. Ho SH, Chen CY, Chang JS (2012) Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour Technol 113:244–252. https://doi.org/10.1016/j.biortech.2011.11.133

    Article  CAS  PubMed  Google Scholar 

  85. Schnurr PJ, Espie GS, Allen DG (2013) Algae biofilm growth and the potential to stimulate lipid accumulation through nutrient starvation. Bioresour Technol 136:337–344. https://doi.org/10.1016/j.biortech.2013.03.036

    Article  CAS  PubMed  Google Scholar 

  86. Juneja A, Ceballos R, Murthy G (2013) Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies 6(9):4607–4638. https://doi.org/10.3390/en6094607

    Article  CAS  Google Scholar 

  87. Gardner-Dale DA, Bradley IM, Guest JS (2017) Influence of solids residence time and carbon storage on nitrogen and phosphorus recovery by microalgae across diel cycles. Water Res 121:231–239. https://doi.org/10.1016/j.watres.2017.05.033

    Article  CAS  PubMed  Google Scholar 

  88. Khan MI, Shin JH, Kim JD (2018) The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Factories 17(1):36. https://doi.org/10.1186/s12934-018-0879-x

    Article  Google Scholar 

  89. Devi MP, Mohan SV (2012) CO2 supplementation to domestic wastewater enhances microalgae lipid accumulation under mixotrophic microenvironment: effect of sparging period and interval. Bioresour Technol 112:116–123. https://doi.org/10.1016/j.biortech.2012.02.095

    Article  CAS  PubMed  Google Scholar 

  90. Krzeminska I, Pawlik-Skowronska B, Trzcinska M, Tys J (2014) Influence of photoperiods on the growth rate and biomass productivity of green microalgae. Bioprocess Biosyst Eng 37(4):735–741. https://doi.org/10.1007/s00449-013-1044-x

    Article  CAS  PubMed  Google Scholar 

  91. Graba M, Sauvage S, Majdi N, Mialet B, Moulin FY, Urrea G, Buffan-Dubau E, Tackx M, Sabater S, Sanchez-Pérez J-M (2014) Modelling epilithic biofilms combining hydrodynamics, invertebrate grazing and algal traits. Freshw Biol 59(6):1213–1228. https://doi.org/10.1111/fwb.12341

    Article  Google Scholar 

  92. Cerucci M, Jaligama GK, Ambrose RB Jr (2010) Comparison of the monod and droop methods for dynamic water quality simulations. J Environ Eng 136(10):1009–1019

    Article  CAS  Google Scholar 

  93. Liehr SK, Suidan MT, Eheart JW (1990) A modeling study of carbon and light limitation in algal biofilms. Biotechnol Bioeng 35(3):233–243

    Article  CAS  Google Scholar 

  94. Alabi AO, Tampier M, Bibeau E (2009) Microalgae technologies & processes for biofuels-bioenergy production in British Columbia: current technology, suitability & barriers to implementation. British Columbia Innovation Council, Vancouver

    Google Scholar 

  95. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14(1):217–232. https://doi.org/10.1016/j.rser.2009.07.020

    Article  CAS  Google Scholar 

  96. Sforza E, Simionato D, Giacometti GM, Bertucco A, Morosinotto T (2012) Adjusted light and dark cycles can optimize photosynthetic efficiency in algae growing in photobioreactors. PLoS One 7(6):e38975. https://doi.org/10.1371/journal.pone.0038975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ye CP, Zhang MC, Yang YF, Thirumaran G (2012) Photosynthetic performance in aquatic and terrestrial colonies of Nostoc flagelliforme (Cyanophyceae) under aquatic and aerial conditions. J Arid Environ 85:56–61. https://doi.org/10.1016/j.jaridenv.2012.03.023

    Article  Google Scholar 

  98. Bechet Q, Laviale M, Arsapin N, Bonnefond H, Bernard O (2017) Modeling the impact of high temperatures on microalgal viability and photosynthetic activity. Biotechnol Biofuels 10:136. https://doi.org/10.1186/s13068-017-0823-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kitaya Y, Azuma H, Kiyota M (2005) Effects of temperature, CO2/O2 concentrations and light intensity on cellular multiplication of microalgae, Euglena gracilis. Adv Space Res 35(9):1584–1588. https://doi.org/10.1016/j.asr.2005.03.039

    Article  CAS  PubMed  Google Scholar 

  100. Singh SP, Singh P (2015) Effect of temperature and light on the growth of algae species: a review. Renew Sust Energ Rev 50:431–444. https://doi.org/10.1016/j.rser.2015.05.024

    Article  CAS  Google Scholar 

  101. Covarrubias Y, Cantoral-Uriza EA, Casas-Flores JS, García-Meza JV (2016) Thermophile mats of microalgae growing on the woody structure of a cooling tower of a thermoelectric power plant in Central Mexico. Revista Mexicana de Biodiversidad 87(2):277–287. https://doi.org/10.1016/j.rmb.2016.04.001

    Article  Google Scholar 

  102. Grobbelaar JU(2003) Algal Nutrition–Mineral Nutrition. In: Richmond A, Handbook of microalgal culture: biotechnology and applied phycology. Oxford: Blackwell; 2004. p. 97–115

    Google Scholar 

  103. Atkinson D, Ciotti BJ, Montagnes DJ (2003) Protists decrease in size linearly with temperature: ca. 2.5% degrees C(-1). Proc Biol Sci 270(1533):2605–2611. https://doi.org/10.1098/rspb.2003.2538

    Article  PubMed  PubMed Central  Google Scholar 

  104. Moller A, Biard C, Blount J, Houston D, Ninni P, Saino N, Surai P (2000) Carotenoid-dependent signals: indicators of foraging efficiency, immunocompetence or detoxification ability? Avian Poult Biol Rev 11(3):137–160

    Google Scholar 

  105. Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. 48(6):1146–1151

  106. Decho AW (2000) Exopolymer microdomains as a structuring agent for heterogeneity within microbial biofilms. In: Microbial Sediments. pp 9-15. doi:https://doi.org/10.1007/978-3-662-04036-2_2

  107. Thomen P, Robert J, Monmeyran A, Bitbol AF, Douarche C, Henry N (2017) Bacterial biofilm under flow: first a physical struggle to stay, then a matter of breathing. PLoS One 12(4):e0175197. https://doi.org/10.1371/journal.pone.0175197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Pizarro C, Mulbry W, Blersch D, Kangas P (2006) An economic assessment of algal turf scrubber technology for treatment of dairy manure effluent. Ecol Eng 26(4):321–327. https://doi.org/10.1016/j.ecoleng.2005.12.009

    Article  Google Scholar 

  109. Mukherjee B, Moroney JV (2011) Algal carbon dioxide concentrating mechanisms.1-12

  110. Sawayama S, Inoue S, Dote Y, Yokoyama S-Y (1995) CO2 fixation and oil production through microalga. Energy Convers Manag 36(6-9):729–731

    Article  CAS  Google Scholar 

  111. Yun YS, Lee SB, Park JM, Lee CI, Yang JW (1997) Carbon dioxide fixation by algal cultivation using wastewater nutrients. J Chem Technol Biotechnol 69(4):451–455

    Article  CAS  Google Scholar 

  112. Abu-Khader MM (2007) Recent progress in CO2 capture/sequestration: a review. Energy Sources Part A 28(14):1261–1279. https://doi.org/10.1080/009083190933825

    Article  CAS  Google Scholar 

  113. Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14(2):557–577. https://doi.org/10.1016/j.rser.2009.10.009

    Article  CAS  Google Scholar 

  114. Chiu SY, Kao CY, Chen CH, Kuan TC, Ong SC, Lin CS (2008) Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresour Technol 99(9):3389–3396. https://doi.org/10.1016/j.biortech.2007.08.013

    Article  CAS  PubMed  Google Scholar 

  115. de Morais MG, Costa JA (2007) Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnol Lett 29(9):1349–1352. https://doi.org/10.1007/s10529-007-9394-6

    Article  CAS  PubMed  Google Scholar 

  116. Cheng L, Zhang L, Chen H, Gao C (2006) Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Sep Purif Technol 50(3):324–329. https://doi.org/10.1016/j.seppur.2005.12.006

    Article  CAS  Google Scholar 

  117. Lee Y-K, H-SJJoap T (1991) High CO2 partial pressure depresses productivity and bioenergetic growth yield of Chlorella pyrenoidosa culture. 3(2):95–101

  118. Silva HJ, Pirt SJ (1984) Carbon dioxide inhibition of photosynthetic growth of Chlorella. Microbiology 130(11):2833–2838

    Article  CAS  Google Scholar 

  119. Katarzyna L, Sai G, Singh OA (2015) Non-enclosure methods for non-suspended microalgae cultivation: literature review and research needs. Renew Sust Energ Rev 42:1418–1427. https://doi.org/10.1016/j.rser.2014.11.029

    Article  CAS  Google Scholar 

  120. Su Y, Mennerich A, Urban B (2011) Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture. Water Res 45(11):3351–3358. https://doi.org/10.1016/j.watres.2011.03.046

    Article  CAS  PubMed  Google Scholar 

  121. Wei Q, Hu Z, Li G, Xiao B, Sun H, Tao M (2008) Removing nitrogen and phosphorus from simulated wastewater using algal biofilm technique. Front Environ Sci Eng China 2(4):446–451. https://doi.org/10.1007/s11783-008-0064-2

    Article  Google Scholar 

  122. Knud-Hansen CF, Clair D (1998) Pond fertilization: ecological approach and practical application. Pond Dynamics/Aquaculture Collaborative Research Support Program, Oregon

    Google Scholar 

  123. Flora JR, Suidan MT, Biswas P, Sayles GD (1993) Modeling substrate transport into biofilms: role of multiple ions and pH effects. J Environ Eng 119(5):908–930

    Article  CAS  Google Scholar 

  124. Kesaano M, Smith T, Wood J, Sims RC (2015) Applications of algal biofilms for wastewater treatment and bioproduct production. In: Algae and Environmental Sustainability. pp 23-31. doi:https://doi.org/10.1007/978-81-322-2641-3_3

  125. Zamalloa C, Vulsteke E, Albrecht J, Verstraete W (2011) The techno-economic potential of renewable energy through the anaerobic digestion of microalgae. Bioresour Technol 102(2):1149–1158. https://doi.org/10.1016/j.biortech.2010.09.017

    Article  CAS  PubMed  Google Scholar 

  126. de Godos I, Blanco S, Garcia-Encina PA, Becares E, Munoz R (2010) Influence of flue gas sparging on the performance of high rate algae ponds treating agro-industrial wastewaters. J Hazard Mater 179(1-3):1049–1054. https://doi.org/10.1016/j.jhazmat.2010.03.112

    Article  CAS  PubMed  Google Scholar 

  127. Murakami M, Ikenouchi M (1997) The biological CO2 fixation and utilization project by rite (2)—screening and breeding of microalgae with high capability in fixing CO2—. 38:S493–S497

  128. Razzak SA, Hossain MM, Lucky RA, Bassi AS, de Lasa H (2013) Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—a review. Renew Sust Energ Rev 27:622–653. https://doi.org/10.1016/j.rser.2013.05.063

    Article  CAS  Google Scholar 

  129. Zhao B, Su Y (2014) Process effect of microalgal-carbon dioxide fixation and biomass production: a review. Renew Sust Energ Rev 31:121–132. https://doi.org/10.1016/j.rser.2013.11.054

    Article  CAS  Google Scholar 

  130. Mirón AS, Garcı́a MCC, Gómez AC, FGa C, Grima EM, Chisti Y (2003) Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochem Eng J 16(3):287–297. https://doi.org/10.1016/s1369-703x(03)00072-x

    Article  Google Scholar 

  131. Huang C-H, Tan C-S (2014) A review: CO2 utilization. Aerosol Air Qual Res 14(2):480–499. https://doi.org/10.4209/aaqr.2013.10.0326

    Article  CAS  Google Scholar 

  132. Herzog H, Golomb D (2004) Carbon capture and storage from fossil fuel use. Encycl Energy 1(6562):277–287

    Article  Google Scholar 

  133. Ho SH, Chen CY, Lee DJ, Chang JS (2011) Perspectives on microalgal CO2-emission mitigation systems--a review. Biotechnol Adv 29(2):189–198. https://doi.org/10.1016/j.biotechadv.2010.11.001

    Article  CAS  PubMed  Google Scholar 

  134. Klinthong W, Yang Y-H, Huang C-H, Tan C-S (2015) A review: microalgae and their applications in CO2 capture and renewable energy. Aerosol Air Qual Res 15(2):712–742. https://doi.org/10.4209/aaqr.2014.11.0299

    Article  CAS  Google Scholar 

  135. Jansson C, Northen T (2010) Calcifying cyanobacteria--the potential of biomineralization for carbon capture and storage. Curr Opin Biotechnol 21(3):365–371. https://doi.org/10.1016/j.copbio.2010.03.017

    Article  CAS  PubMed  Google Scholar 

  136. Spalding MH (2008) Microalgal carbon-dioxide-concentrating mechanisms: Chlamydomonas inorganic carbon transporters. J Exp Bot 59(7):1463–1473. https://doi.org/10.1093/jxb/erm128

    Article  CAS  PubMed  Google Scholar 

  137. Gillis MLJJM, Hwang TJ-Y (2003) Carbon dioxide mitigation by microalgal photosynthesis. Bull Kor Chem Soc 24(12):1763

    Article  Google Scholar 

  138. Sayre R (2010) Microalgae: the potential for carbon capture. BioScience 60(9):722–727. https://doi.org/10.1525/bio.2010.60.9.9

    Article  Google Scholar 

  139. Zhu XG, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19(2):153–159. https://doi.org/10.1016/j.copbio.2008.02.004

    Article  CAS  PubMed  Google Scholar 

  140. Douskova I, Doucha J, Livansky K, Machat J, Novak P, Umysova D, Zachleder V, Vitova M (2009) Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs. Appl Microbiol Biotechnol 82(1):179–185. https://doi.org/10.1007/s00253-008-1811-9

    Article  CAS  PubMed  Google Scholar 

  141. Powell EE, Mapiour ML, Evitts RW, Hill GA (2009) Growth kinetics of Chlorella vulgaris and its use as a cathodic half cell. Bioresour Technol 100(1):269–274. https://doi.org/10.1016/j.biortech.2008.05.032

    Article  CAS  PubMed  Google Scholar 

  142. Wang X, Feng Y, Liu J, Lee H, Li C, Li N, Ren N (2010) Sequestration of CO2 discharged from anode by algal cathode in microbial carbon capture cells (MCCs). Biosens Bioelectron 25(12):2639–2643. https://doi.org/10.1016/j.bios.2010.04.036

    Article  CAS  PubMed  Google Scholar 

  143. Kakarla R, Min B (2014) Photoautotrophic microalgae Scenedesmus obliquus attached on a cathode as oxygen producers for microbial fuel cell (MFC) operation. Int J Hydrog Energy 39(19):10275–10283. https://doi.org/10.1016/j.ijhydene.2014.04.158

    Article  CAS  Google Scholar 

  144. Kakarla R, Min B (2014) Evaluation of microbial fuel cell operation using algae as an oxygen supplier: carbon paper cathode vs. carbon brush cathode. Bioprocess Biosyst Eng 37(12):2453–2461. https://doi.org/10.1007/s00449-014-1223-4

    Article  CAS  PubMed  Google Scholar 

  145. Lee DJ, Chang JS, Lai JY (2015) Microalgae-microbial fuel cell: a mini review. Bioresour Technol 198:891–895. https://doi.org/10.1016/j.biortech.2015.09.061

    Article  CAS  PubMed  Google Scholar 

  146. Bombelli P, Bradley RW, Scott AM, Philips AJ, McCormick AJ, Cruz SM, Anderson A, Yunus K, Bendall DS, Cameron PJ, Davies JM, Smith AG, Howe CJ, Fisher AC (2011) Quantitative analysis of the factors limiting solar power transduction by Synechocystis sp. PCC 6803 in biological photovoltaic devices. Energy Environ Sci 4(11). https://doi.org/10.1039/c1ee02531g

  147. Xiao L, Young EB, Berges JA, He Z (2012) Integrated photo-bioelectrochemical system for contaminants removal and bioenergy production. Environ Sci Technol 46(20):11459–11466. https://doi.org/10.1021/es303144n

    Article  CAS  PubMed  Google Scholar 

  148. Cui Y, Rashid N, Hu N, Rehman MSU, Han J-I (2014) Electricity generation and microalgae cultivation in microbial fuel cell using microalgae-enriched anode and bio-cathode. Energy Convers Manag 79:674–680. https://doi.org/10.1016/j.enconman.2013.12.032

    Article  CAS  Google Scholar 

  149. Kondaveeti S, Choi KS, Kakarla R, Min B (2013) Microalgae Scenedesmus obliquus as renewable biomass feedstock for electricity generation in microbial fuel cells (MFCs). Front Environ Sci Eng 8(5):784–791. https://doi.org/10.1007/s11783-013-0590-4

    Article  CAS  Google Scholar 

  150. Rashid N, Rehman MSU, Han J-I (2013) Recycling and reuse of spent microalgal biomass for sustainable biofuels. Biochem Eng J 75:101–107. https://doi.org/10.1016/j.bej.2013.04.001

    Article  CAS  Google Scholar 

  151. Shukla M, Kumar S (2018) Algal growth in photosynthetic algal microbial fuel cell and its subsequent utilization for biofuels. Renew Sust Energ Rev 82:402–414. https://doi.org/10.1016/j.rser.2017.09.067

    Article  CAS  Google Scholar 

  152. Weyer KM, Bush DR, Darzins A, Willson BD (2009) Theoretical maximum algal oil production. BioEnergy Res 3(2):204–213. https://doi.org/10.1007/s12155-009-9046-x

    Article  CAS  Google Scholar 

  153. Melis A (2009) Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci 177(4):272–280. https://doi.org/10.1016/j.plantsci.2009.06.005

    Article  CAS  Google Scholar 

  154. Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the US Department of Energy’s aquatic species program: biodiesel from algae. 328:1-294

  155. Lee SH, Oh HM, Jo BH, Lee SA, Shin SY, Kim HS, Lee SH, Ahn CY (2014) Higher biomass productivity of microalgae in an attached growth system, using wastewater. J Microbiol Biotechnol 24(11):1566–1573. https://doi.org/10.4014/jmb.1406.06057

    Article  CAS  PubMed  Google Scholar 

  156. Economou CN, Marinakis N, Moustaka-Gouni M, Kehayias G, Aggelis G, Vayenas DV (2015) Lipid production by the filamentous cyanobacterium Limnothrix sp. growing in synthetic wastewater in suspended- and attached-growth photobioreactor systems. Ann Microbiol 65(4):1941–1948. https://doi.org/10.1007/s13213-014-1032-7

    Article  CAS  Google Scholar 

  157. Guihéneuf F, Mimouni V, Ulmann L, Tremblin G (2009) Combined effects of irradiance level and carbon source on fatty acid and lipid class composition in the microalga Pavlova lutheri commonly used in mariculture. J Exp Mar Biol Ecol 369(2):136–143. https://doi.org/10.1016/j.jembe.2008.11.009

    Article  CAS  Google Scholar 

  158. Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102(1):17–25. https://doi.org/10.1016/j.biortech.2010.06.035

    Article  CAS  PubMed  Google Scholar 

  159. Lundquist TJ, Woertz IC, Quinn N, Benemann J (2010) A realistic technology and engineering assessment of algae biofuel production. Energy 1

  160. Wang B, Li Y, Wu N, Lan CQ (2008) CO(2) bio-mitigation using microalgae. Appl Microbiol Biotechnol 79(5):707–718. https://doi.org/10.1007/s00253-008-1518-y

    Article  CAS  PubMed  Google Scholar 

  161. Adey WH, Kangas PC, Mulbry WJB (2011) Algal turf scrubbing: cleaning surface waters with solar energy while producing a biofuel. 61 (6):434-441

  162. Zhang Y, Luo P, Zhao S, Kang S, Wang P, Zhou M, Lyu J (2020) Control and remediation methods for eutrophic lakes in the past 30 years. Water Sci Technol 81(6):1099–1113. https://doi.org/10.2166/wst.2020.218

    Article  CAS  PubMed  Google Scholar 

  163. Sukačová K, Červený J (2017) Can algal biotechnology bring effective solution for closing the phosphorus cycle? Use of algae for nutrient removal: Review of past trends and future perspectives in the context of nutrient recovery. Eur J Environ Sci 7(1):63–72. https://doi.org/10.14712/23361964.2017.6

    Article  Google Scholar 

  164. Sládečková A, Marvan P, Vymazal J (1983) The utilization of periphyton in waterworks pre-treatment for nutrient removal from enriched influents. In: Periphyton of freshwater ecosystems. Springer, pp 299-303

  165. Vymazal J (1988) The use of periphyton communities for nutrient removal from polluted streams. Hydrobiologia 166(3):225–237

    Article  CAS  Google Scholar 

  166. Wu Y, Fang T, Qiu C, J L (2005) Method of algae-bacterium biofilm to improve the water quality in eutrophic waters. Huan Jing Ke Xue 26(1):84–89

    PubMed  Google Scholar 

  167. Ma P-M, Kuang Q-J, Ling X-H, Hu Z-Y (2007) Study on efficiency of nitrogen and phosphorus removal by algal biofilm. 28(4):742–746

  168. Delp D (2015) Developing an algal biofilm filtration system for the remediation of nutrient pollution in freshwater ponds. Thesis. Rochester Institute of Technology. Accessed from https://scholarworks.rit.edu/theses/8894

  169. Hossain N, Zaini J, Indra Mahlia TM (2019) Life cycle assessment, energy balance and sensitivity analysis of bioethanol production from microalgae in a tropical country. Renew Sust Energ Rev 115. https://doi.org/10.1016/j.rser.2019.109371

  170. Pérez-López P, de Vree JH, Feijoo G, Bosma R, Barbosa MJ, Moreira MT, Wijffels RH, van Boxtel AJB, Kleinegris DMM (2017) Comparative life cycle assessment of real pilot reactors for microalgae cultivation in different seasons. Appl Energy 205:1151–1164. https://doi.org/10.1016/j.apenergy.2017.08.102

    Article  Google Scholar 

  171. Xin C, Addy MM, Zhao J, Cheng Y, Cheng S, Mu D, Liu Y, Ding R, Chen P, Ruan R (2016) Comprehensive techno-economic analysis of wastewater-based algal biofuel production: a case study. Bioresour Technol 211:584–593. https://doi.org/10.1016/j.biortech.2016.03.102

    Article  CAS  PubMed  Google Scholar 

  172. Juneja A, Murthy GS (2017) Evaluating the potential of renewable diesel production from algae cultured on wastewater: techno-economic analysis and life cycle assessment. AIMS Energy 5(2):239–257. https://doi.org/10.3934/energy.2017.2.239

    Article  CAS  Google Scholar 

  173. Barlow J, Sims RC, Quinn JC (2016) Techno-economic and life-cycle assessment of an attached growth algal biorefinery. Bioresour Technol 220:360–368

    Article  CAS  Google Scholar 

  174. Kang S, Heo S, Lee JH (2018) Techno-economic analysis of microalgae-based lipid production: considering influences of microalgal species. Ind Eng Chem Res 58(2):944–955. https://doi.org/10.1021/acs.iecr.8b03999

    Article  CAS  Google Scholar 

  175. Yadav G, Dubey BK, Sen R (2020) A comparative life cycle assessment of microalgae production by CO2 sequestration from flue gas in outdoor raceway ponds under batch and semi-continuous regime. J Clean Prod 258. https://doi.org/10.1016/j.jclepro.2020.120703

  176. Porcelli R, Dotto F, Pezzolesi L, Marazza D, Greggio N, Righi S (2020) Comparative life cycle assessment of microalgae cultivation for non-energy purposes using different carbon dioxide sources. Sci Total Environ 712:137714

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank the University Grants Commission (UGC), Government of India, for providing a scholarship to conduct the study.

Author information

Authors and Affiliations

Authors

Contributions

GS: conceptualization and writing—original draft. SKP: supervision and writing—reviewing and editing.

Corresponding author

Correspondence to Gulab Singh.

Ethics declarations

Statement of informed consent

No conflicts, informed consent, and human or animal rights applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, G., Patidar, S.K. Development and Applications of Attached Growth System for Microalgae Biomass Production. Bioenerg. Res. 14, 709–722 (2021). https://doi.org/10.1007/s12155-020-10195-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-020-10195-8

Keywords

Navigation