Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 28, 2020

Corrole photochemistry

  • Christopher M. Lemon

    Christopher M. Lemon was born and raised outside of Pittsburgh, Pennsylvania, USA. He studied chemistry, physics, and statistics at Ohio Northern University. He then spent a year abroad as a Fulbright scholar at the University of Auckland in New Zealand, working with Professor Penelope Brothers. In 2010, Chris began his PhD studies at The Massachusetts Institute of Technology and then Harvard University under the supervision of Professor Daniel Nocera, where he developed quantum dot-based oxygen sensors. During his graduate research, he also studied several aspects of corrole chemistry, including the photophysics, electronic structure, and photochemistry of these molecules. In 2016, Chris began postdoctoral studies at the University of California, Berkeley in the laboratory of Professor Michael Marletta as a Miller Fellow. His postdoctoral research focuses on the development of proteins with designer functions that can be utilized for biological sensing and imaging applications. He is an awardee of the 2017 IUPAC-Solvay International Award for Young Chemists.

    ORCID logo EMAIL logo

Abstract

The rapid expansion of photoredox catalysis and artificial photosynthesis has garnered renewed interest in the field of photochemistry. While porphyrins have been widely utilized for a variety of photochemical applications, corrole photochemistry remains underexplored, despite an exponential growth in corrole chemistry. Indeed, less than 4% of all corrole-related publications have studied the photochemistry of these molecules. Since corroles exhibit chemical properties that are distinct from porphyrins and related macrocycles, it is likely that this divergence would also be observed in their photochemical properties. This review provides a comprehensive summary of the extant corrole photochemistry literature. Corroles primarily serve as photosensitizers that transfer energy or an electron to molecular oxygen to form singlet oxygen or superoxide, respectively. While both of these reactive oxygen species can be used to drive chemical reactions, they can also be exploited for photodynamic therapy to treat cancer and other diseases. Although direct photochemical activation of metal–ligand bonds has been less explored, corroles mediate a variety of transformations, particularly oxygen atom transfer reactions. Together, these examples illustrate the diversity of corrole photochemistry and suggest that there are many additional applications yet to be discovered.


Corresponding author: Christopher M. Lemon, Miller Institute for Basic Research in Science, Department of Molecular and Cell Biology, and California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, 94720, USA, e-mail: .
Article note: A collection of peer-reviewed articles by past winners of the IUPAC and IUPAC-SOLVAY International Award for Young Chemists to celebrate the 60th anniversary of Pure and Applied Chemistry.

About the author

Christopher M. Lemon

Christopher M. Lemon was born and raised outside of Pittsburgh, Pennsylvania, USA. He studied chemistry, physics, and statistics at Ohio Northern University. He then spent a year abroad as a Fulbright scholar at the University of Auckland in New Zealand, working with Professor Penelope Brothers. In 2010, Chris began his PhD studies at The Massachusetts Institute of Technology and then Harvard University under the supervision of Professor Daniel Nocera, where he developed quantum dot-based oxygen sensors. During his graduate research, he also studied several aspects of corrole chemistry, including the photophysics, electronic structure, and photochemistry of these molecules. In 2016, Chris began postdoctoral studies at the University of California, Berkeley in the laboratory of Professor Michael Marletta as a Miller Fellow. His postdoctoral research focuses on the development of proteins with designer functions that can be utilized for biological sensing and imaging applications. He is an awardee of the 2017 IUPAC-Solvay International Award for Young Chemists.

Acknowledgments

I would like to thank Prof. Daniel G. Nocera for his guidance and support during my graduate studies. I also thank Prof. Michael A. Marletta for mentorship during my post-doctoral training. Kimberly A. Houghton and Dr. Elizabeth C. Wittenborn are thanked for critical input during the preparation of this manuscript. C.M.L acknowledges the Miller Institute for Basic Research in Science at the University of California, Berkeley for a postdoctoral fellowship.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was funded by the Adolph C. and Mary Sprague Miller Institute for Basic Research in Science, University of California Berkeley.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] T. L. Poulos. Chem. Rev.114, 3919 (2014).10.1021/cr400415kSearch in Google Scholar

[2] D. von Wettstein, S. Gough, C. G. Kannangara. Plant Cell7, 1039 (1995).10.2307/3870056Search in Google Scholar

[3] E. Raux, H. L. Schubert, M. J. Warren. Cell. Mol. Life Sci.57, 1880 (2000).10.1007/PL00000670Search in Google Scholar

[4] A. W. Johnson, R. Price. J. Chem. Soc. 1649 (1960).10.1039/jr9600001649Search in Google Scholar

[5] A. W. Johnson, I. T. Kay. Proc. Chem. Soc. 89 (1964).Search in Google Scholar

[6] A. W. Johnson, I. T. Kay. J. Chem. Soc. 1620 (1965).10.1039/jr9650001620Search in Google Scholar

[7] Z. Gross, N. Galili, I. Saltsman. Angew. Chem. Int. Ed.38, 1427 (1999).10.1002/(SICI)1521-3773(19990517)38:10<1427::AID-ANIE1427>3.0.CO;2-1Search in Google Scholar

[8] R. Paolesse, S. Mini, F. Sagone, T. Boschi, L. Jaquinod, D. J. Nurco, K. M. Smith. Chem. Commun. 1307 (1999).10.1039/a903247iSearch in Google Scholar

[9] A. Ghosh. Chem. Rev.117, 3798 (2017).10.1021/acs.chemrev.6b00590Search in Google Scholar

[10] J. Bendix, I. J. Dmochowski, H. B. Gray, A. Mahammed, L. Simkhovich, Z. Gross. Angew. Chem. Int. Ed.39, 4048 (2000).10.1002/1521-3773(20001117)39:22<4048::AID-ANIE4048>3.0.CO;2-7Search in Google Scholar

[11] A. Mahammed, Z. Gross. J. Inorg. Biochem.88, 305 (2002).10.1016/S0162-0134(01)00373-7Search in Google Scholar

[12] B. Ventura, A. D. Esposti, B. Koszarna, D. T. Gryko, L. Flamigni. New J. Chem.29, 1559 (2005).10.1039/b507979aSearch in Google Scholar

[13] T. Ding, E. A. Alemán, D. A. Modarelli, C. J. Ziegler. J. Phys. Chem. A109, 7411 (2005).10.1021/jp052047iSearch in Google Scholar

[14] C. M. Lemon, R. L. Halbach, M. Huynh, D. G. Nocera. Inorg. Chem.54, 2713 (2015).10.1021/ic502860gSearch in Google Scholar

[15] I. Aviv, Z. Gross. Chem. Commun. 1987 (2007).10.1039/b618482kSearch in Google Scholar

[16] I. Aviv-Harel, Z. Gross. Chem. Eur. J.15, 8382 (2009).10.1002/chem.200900920Search in Google Scholar

[17] Z. Gross, G. Golubkov, L. Simkhovich. Angew. Chem. Int. Ed.39, 4045 (2000).10.1002/1521-3773(20001117)39:22<4045::AID-ANIE4045>3.0.CO;2-PSearch in Google Scholar

[18] A. Mahammed, H. B. Gray, A. E. Meier-Callahan, Z. Gross. J. Am. Chem. Soc.125, 1162 (2003).10.1021/ja028216jSearch in Google Scholar

[19] D. K. Dogutan, R. McGuire, D. G. Nocera. J. Am. Chem. Soc.133, 9178 (2011).10.1021/ja202138mSearch in Google Scholar

[20] A. Mahammed, Z. Gross. Coord. Chem. Rev.379, 121 (2019).10.1016/j.ccr.2017.08.028Search in Google Scholar

[21] X. Jiang, R. -X. Liu, H. -Y. Liu, C. K. Chang. J. Chin. Chem. Soc.66, 1090 (2019).10.1002/jccs.201900176Search in Google Scholar

[22] H. Agadjanian, J. Ma, A. Rentsendorj, V. Valluripalli, J. Y. Hwang, A. Mahammed, D. L. Farkas, H. B. Gray, Z. Gross, L. K. Medina-Kauwe. Proc. Natl. Acad. U.S.A.106, 6105 (2009).10.1073/pnas.0901531106Search in Google Scholar PubMed PubMed Central

[23] J.-Y. Hwang, D. L. Farkas, L. K. Medina-Kauwe, Z. Gross, H. B. Gray. J. Biomed. Opt.16, 066007 (2011).Search in Google Scholar

[24] R. Orłowski, D. Gryko, D. T. Gryko. Chem. Rev.117, 3102 (2017).10.1021/acs.chemrev.6b00434Search in Google Scholar PubMed

[25] J. F. B. Barata, M. G. P. M. S. Neves, M. A. F. Faustino, A. C. Tomé, J. A. S. Cavalerio. Chem. Rev.117, 3192 (2017).10.1021/acs.chemrev.6b00476Search in Google Scholar PubMed

[26] Y. Fang, Z. Ou, K. M. Kadish. Chem. Rev.117, 3377 (2017).10.1021/acs.chemrev.6b00546Search in Google Scholar PubMed

[27] W. Zhang, W. Lai, R. Cao. Chem. Rev.117, 3717 (2017).10.1021/acs.chemrev.6b00299Search in Google Scholar PubMed

[28] R. D. Teo, J. Y. Hwang, J. Termini, Z. Gross, H. B. Gray. Chem. Rev.117, 2711 (2017).10.1021/acs.chemrev.6b00400Search in Google Scholar PubMed PubMed Central

[29] SciFinder (scifinder.cas.org), Chemical Abstracts Service, Columbus (2020) (accessed 14 Sep, 2020).Search in Google Scholar

[30] J. M. R. Narayanam, C. R. J. Stephenson. Chem. Soc. Rev.40, 102 (2011).10.1039/B913880NSearch in Google Scholar

[31] J. Xuan, W. -J. Xiao. Angew. Chem. Int. Ed.51, 6828 (2012).10.1002/anie.201200223Search in Google Scholar PubMed

[32] C. K. Prier, D. A. Rankic, D. W. C. MacMillan. Chem. Rev.113, 5322 (2013).10.1021/cr300503rSearch in Google Scholar PubMed PubMed Central

[33] N. S. Lewis, D. G. Nocera. Proc. Natl. Acad. Sci. U.S.A.103, 12729 (2006).10.1073/pnas.0601765103Search in Google Scholar PubMed PubMed Central

[34] T. R. Cook, D. K. Dogutan, S. Y. Reece, Y. Surendrantah, T. S. Teets, D. G. Nocera. Chem. Rev.110, 6474 (2010).10.1021/cr100246cSearch in Google Scholar

[35] A. A. Gorman, M. A. J. Rodgers. Chem. Soc. Rev.10, 205 (1981).10.1039/cs9811000205Search in Google Scholar

[36] C. Schweitzer, R. Schmidt. Chem. Rev.103, 1685 (2003).10.1021/cr010371dSearch in Google Scholar

[37] C. M. Lemon. Pure Appl. Chem.90, 1359 (2018).10.1515/pac-2018-0303Search in Google Scholar

[38] D. Weldon, T. D. Poulsen, K. V. Mikkelsen, P. R. Ogilby. Photochem. Photobiol.70, 369 (1999).10.1562/0031-8655(1999)070<0369:SSTSOI>2.3.CO;2Search in Google Scholar

[39] S. Ganguly, A. Ghosh. Acc. Chem. Res.52, 2003 (2019).10.1021/acs.accounts.9b00115Search in Google Scholar

[40] R. F. Einrem, H. Braband, T. Fox, H. Vazquez-Lima, R. Alberto, A. Ghosh. Chem. Eur J.22, 18747 (2016).10.1002/chem.201605015Search in Google Scholar

[41] W. Shao, H. Wang, S. He, L. Shi, K. Peng, Y. Lin, L. Zhang, L. Ji, H. Liu. J. Phys. Chem. B116, 14228 (2012).10.1021/jp306826pSearch in Google Scholar

[42] M. Soll, K. Sudhakar, N. Fridman, A. Müller, B. Röder, Z. Gross. Org. Lett.18, 5840 (2016).10.1021/acs.orglett.6b02877Search in Google Scholar

[43] B. Babu, E. Prinsloo, J. Mack, T. Nyokong. New J. Chem.43, 18805 (2019).10.1039/C9NJ03391BSearch in Google Scholar

[44] T. V. Acunha, H. F. V. Victória, K. Krambrock, A. C. Marques, L. A. S. Costa, B. A. Iglesias. Chem. Phys. Phys. Chem.22, 16965 (2020).10.1039/D0CP02364GSearch in Google Scholar PubMed

[45] L. Shi, H.-Y. Liu, K.-M. Peng, X.-L. Wang, L.-L. You, J. Lu, L. Zhang, H. Wang, L.-N. Ji, H.-F. Jiang. Tetrahedron Lett.51, 3439 (2010).10.1016/j.tetlet.2010.04.112Search in Google Scholar

[46] F. Zhao, X. Zhan, S.-H. Lai, L. Zhang, H.-Y. Liu. RSC Adv.9, 12626 (2019).10.1039/C9RA00928KSearch in Google Scholar PubMed PubMed Central

[47] L. Shi, H. Y. Liu, L. P. Si, K. M. Peng, L. L. You, H. Wang, L. Zhang, L. N. Ji, C. K. Chang, H. F. Jiang. Chin. Chem. Lett.21, 373 (2010).10.1016/j.cclet.2009.11.027Search in Google Scholar

[48] Y.-M. Sun, X. Jiang, Z.-Y. Liu, L.-G. Liu, Y.-H. Liao, L. Zeng, Y. Ye, H.-Y. Liu. Eur. J. Med. Chem.208, 112794 (2020).10.1016/j.ejmech.2020.112794Search in Google Scholar PubMed

[49] F. Cheng, H.-H. Wang, A. Ali, J. Kandhadi, H. Wang, X.-L. Wang, H.-Y. Liu. J. Porphyrins Phthalocyanines22, 886 (2018).10.1142/S1088424618500724Search in Google Scholar

[50] S.-H. Lai, L.-L. Wang, B. Wan, A.-W. Lu, H. Wang, H.-Y. Liu. J. Photochem. Photobiol. A390, 112283 (2020).10.1016/j.jphotochem.2019.112283Search in Google Scholar

[51] Z. Gross, H. B. Gray. Comments Inorg. Chem.27, 61 (2006).10.1080/02603590600666256Search in Google Scholar

[52] G. R. Geier, J. F. B. Chick, J. B. Callinan, C. G. Reid, W. P. Auguscinski. J. Org. Chem.69, 4159 (2004).10.1021/jo0496493Search in Google Scholar PubMed

[53] R. F. Einrem, A. B. Alemayehu, S. M. Borisov, A. Ghosh, O. A. Gederaas. ACS Omega5, 10596 (2020).10.1021/acsomega.0c01090Search in Google Scholar PubMed PubMed Central

[54] S. M. Borisov, A. Alemayehu, A. Ghosh. J. Mater. Chem. C4, 5822 (2016).10.1039/C6TC01126HSearch in Google Scholar

[55] I. K. Thomassen, L. J. McCormick-McPherson, S. M. Borisov, A. Ghosh. Sci. Rep.10, 7551 (2020).10.1038/s41598-020-64389-3Search in Google Scholar PubMed PubMed Central

[56] W. Sinha, L. Ravotto, R. Ceroni, S. Kar. Dalton Trans.44, 17767 (2015).10.1039/C5DT03041BSearch in Google Scholar PubMed

[57] A. Mahammed, K. Chen, J. Vestfrid, J. Zhao, Z. Gross. Chem. Sci.10, 7091 (2019).10.1039/C9SC01463BSearch in Google Scholar PubMed PubMed Central

[58] A. Preuß, I. Saltsman, A. Mahammed, M. Pfitzner, I. Goldberg, Z. Gross, B. Röder. J. Photochem. Photobiol. B133, 39 (2014).10.1016/j.jphotobiol.2014.02.013Search in Google Scholar PubMed

[59] S. Dingiswayo, B. Babu, E. Prinsloo, J. Mack, T. Nyokong. J. Porphyrins Phthalocyanines24, 1138 (2020).10.1142/S1088424620500273Search in Google Scholar

[60] O. Stern, M. Volmer. Phys. Z.20, 183 (1919).Search in Google Scholar

[61] C. M. Lemon, D. G. Nocera. Faraday Discuss.185, 249 (2015).10.1039/C5FD00093ASearch in Google Scholar PubMed

[62] C. M. Lemon, D. C. Powers, P. J. Brothers, D. G. Nocera. Inorg. Chem.56, 10991 (2017).10.1021/acs.inorgchem.7b01302Search in Google Scholar PubMed

[63] S. M. Borisov, R. F. Einrem, A. B. Alemayehu, A. Ghosh. Photochem. Photobiol. Sci.18, 1166 (2019).10.1039/C8PP00473KSearch in Google Scholar PubMed

[64] A. A. Ghogare, A. Greer. Chem. Rev.116, 9994 (2016).10.1021/acs.chemrev.5b00726Search in Google Scholar PubMed

[65] I. Luobenznova, M. Raizman, I. Goldberg, Z. Gross. Inorg. Chem.45, 386 (2006).10.1021/ic051483gSearch in Google Scholar

[66] L. M. Reith, M. Stiftinger, U. Monkowius, G. Knör, W. Schoefberger. Inorg. Chem.50, 6788 (2011).10.1021/ic200840mSearch in Google Scholar

[67] C. Tardieux, C. P. Gros, R. Guilard. J. Heterocyclic Chem.35, 965 (1998).10.1002/jhet.5570350430Search in Google Scholar

[68] P. Świder, A. Nowak-Król, R. Voloshchuk, J. P. Lewtak, D. T. Gryko, W. Danikiewicz. J. Mass Spectrom.45, 1443 (2010).10.1002/jms.1860Search in Google Scholar

[69] A. P. Castano, T. N. Demidova, M. R. Hamblin. Photodiagnosis Photodyn. Ther.1, 279 (2004).10.1016/S1572-1000(05)00007-4Search in Google Scholar

[70] P. R. Ogilby. Chem. Soc. Rev.39, 3181 (2010).10.1039/b926014pSearch in Google Scholar PubMed

[71] C. A. Robertson, D. H. Evans, H. Abrahamse. J. Photochem. Photobiol. B96, 1 (2009).10.1016/j.jphotobiol.2009.04.001Search in Google Scholar PubMed

[72] K. König. J. Microsc.200, 83 (2000).10.1046/j.1365-2818.2000.00738.xSearch in Google Scholar PubMed

[73] Y.-G. Wang, Z. Zhang, H. Wang, H.-Y. Liu. Bioorg. Chem.67, 57 (2016).10.1016/j.bioorg.2016.05.007Search in Google Scholar PubMed

[74] J. Y. Hwang, D. J. Lubow, D. Chu, J. Sims, F. Alonso-Valenteen, H. B. Gray, Z. Gross, D. L. Farkas, L. K. Medina-Kauwe. J. Control. Release163, 368 (2012).10.1016/j.jconrel.2012.09.015Search in Google Scholar PubMed PubMed Central

[75] A. B. Alemayehu, N. U. Day, T. Mani, A. B. Rudine, K. E. Thomas, O. A. Gederaas, S. A. Vinogradov, C. C. Wamser, A. Ghosh. ACS Appl. Mater. Interfaces8, 18935 (2016).10.1021/acsami.6b04269Search in Google Scholar PubMed

[76] Z. Zhang, J.-Y. Wen, B.-B. Lv, X. Li, X. Ying, Y.-J. Wang, H.-T. Zhang, H. Wang, H.-Y. Liu, C.-K. Chang. Appl. Organometal. Chem.30, 132 (2016).10.1002/aoc.3408Search in Google Scholar

[77] J.-M. Wang, Y. Li, H.-Q. Yuan, D.-H. Wu, X. Ying, L. Shi, H.-T. Zhang, H.-Y. Liu. Appl. Organometal. Chem.31, e3571 (2017).10.1002/aoc.3571Search in Google Scholar

[78] Z. Liang, H. Liu, G. Jiang, J. Wen, Y. Liu, X. Xiao. Chin. J. Chem.34, 997 (2016).10.1002/cjoc.201600482Search in Google Scholar

[79] L.-L. Wang, H. Wang, F. Cheng, Z.-H. Liang, C.-F. Liu, Y. Li, W.-Q. Wang, S.-H. Peng, X. Wang. X. Ying, L.-N. Ji, H.-Y. Liu. J. Phys. Chem. C121, 12350 (2017).10.1021/acs.jpcc.7b00168Search in Google Scholar

[80] T. Bornhütter, N. Shamali, I. Saltsman, A. Mahammed, Z. Gross, G. Däschlein, B. Röder. J. Photochem. Photobiol. B178, 606 (2018).10.1016/j.jphotobiol.2017.12.015Search in Google Scholar PubMed

[81] J. Pohl, I. Saltsman, A. Mahammed, Z. Gross, B. Röder. J. Appl. Microbiol.118, 305 (2014).10.1111/jam.12690Search in Google Scholar PubMed

[82] L. M. Reith, M. Himmelsbach, W. Schoefberger, K. Knör. J. Photochem. Photobiol. A218, 247 (2011).10.1016/j.jphotochem.2011.01.008Search in Google Scholar

[83] W. Schöfberger, F. Lengwin, L. M. Reith, M. List, G. Knör. Inorg. Chem. Commun.13, 1187 (2010).10.1016/j.inoche.2010.06.047Search in Google Scholar

[84] A. Mahammed, Z. Gross. Angew. Chem. Int. Ed.54, 12370 (2015).10.1002/anie.201503064Search in Google Scholar PubMed

[85] X. Zhan, P. Yadev, Y. Diskin-Posner, N. Fridman, M. Sundararajan, Z. Ullah, Q.-C. Chen, L. J. W. Shimon, A. Mahammed, D. G. Churchill, M.-H. Baik, Z. Gross. Dalton Trans.48, 12279 (2019).10.1039/C9DT02150GSearch in Google Scholar

[86] X. Zhan, P. Teplitzky, Y. Diskin-Posner, M. Sundararajan, Z. Ullah, Q.-C. Chen, L. J. W. Shimon, I. Saltsman, A. Mahammed, M. Kosa, M.-H. Baik, D. G. Churchill, Z. Gross. Inorg. Chem.58, 6184 (2019).10.1021/acs.inorgchem.9b00436Search in Google Scholar PubMed

[87] X. Zhan, Y. Zini, N. Fridman, Q.-C. Chen, D. G. Churchill, Z. Gross. ChemPlusChem85, 163 (2020).10.1002/cplu.201900667Search in Google Scholar

[88] X. Zhan, S. Kolanu, S. Fite, Q.-C. Chen, W. Lee, D. G. Churchill, Z. Gross. Photochem. Photobiol. Sci.19, 996 (2020).10.1039/D0PP00218FSearch in Google Scholar PubMed

[89] K. Rybicka-Jasińska, W. Shan, K. Zawada, K. M. Kadish, D. Gryko. J. Am. Chem. Soc.138, 47 (2016).Search in Google Scholar

[90] K. Goliszewska, K. Rybicka-Jasińska, J. A. Clark, V. I. Vullev, D. Gryko. ACS Catal.10, 5920 (2020).10.1021/acscatal.0c00200Search in Google Scholar

[91] K. Peuntinger, T. Lazarides, D. Dafnomili, G. Charalambidis, G. Landrou, A. Kahnt, R. P. Sabatini, D. W. McCamant, D. T. Gryko, A. G. Coutsolelos, D. M. Guldi. J. Phys. Chem. C117, 1647 (2013).10.1021/jp311766sSearch in Google Scholar

[92] C. A. Joseph, P. C. Ford. J. Am. Chem. Soc.127, 6737 (2005).10.1021/ja044090+Search in Google Scholar PubMed

[93] C. A. Joseph, M. S. Lee, A. V. Iretskii, G. Wu, P. C. Ford. Inorg. Chem.45, 2075 (2006).10.1021/ic051956jSearch in Google Scholar PubMed

[94] A. Reinholdt, A. B. Alemayehu, K. J. Gagnon, J. Bendix, A. Ghosh. Inorg. Chem.59, 5276 (2020).10.1021/acs.inorgchem.0c00654Search in Google Scholar PubMed PubMed Central

[95] H. Fang, Z. Ling, K. Lang, P. J. Brothers, B. de Bruin, X. Fu. Chem. Sci.5, 916 (2014).10.1039/C3SC52326HSearch in Google Scholar

[96] L. Troian-Gautier, M. D. Turlington, S. A. M. Wehlin, A. B. Maurer, M. D. Brady, W. B. Swords, G. J. Meyer. Chem. Rev.119, 4628 (2019).10.1021/acs.chemrev.8b00732Search in Google Scholar

[97] C. M. Lemon, S. J. Hwang, A. G. Maher, D. C. Powers, D. G. Nocera. Inorg. Chem.57, 5333 (2018).10.1021/acs.inorgchem.8b00314Search in Google Scholar

[98] R. Zhang, D. N. Harischandra, M. Newcomb. Chem. Eur. J.11, 5713 (2005).10.1002/chem.200500134Search in Google Scholar

[99] K. W. Kwong, N. F. Lee, D. Ranburger, J. Malone, R. Zhang. J. Inorg. Biochem.163, 39 (2016).10.1016/j.jinorgbio.2016.08.004Search in Google Scholar

[100] N. F. Lee, J. Malone, H. Jeddi, K. W. Kwong, R. Zhang. Inorg. Chem. Commun.82, 27 (2017).10.1016/j.inoche.2017.05.001Search in Google Scholar

[101] D. N. Harischandra, R. Zhang, M. Newcomb. J. Am. Chem. Soc.127, 13776 (2005).10.1021/ja0542439Search in Google Scholar

[102] D. N. Harischandra, G. Lowery, R. Zhang, M. Newcomb. Org. Lett.11, 2089 (2009).10.1021/ol900480pSearch in Google Scholar

[103] R. Zhang, E. Vanover, T.-H. Chen, H. Thompson. Appl. Catal. A464–454, 95 (2013).10.1016/j.apcata.2013.05.025Search in Google Scholar

[104] C. M. Lemon, A. G. Maher, A. R. Mazzotti, D. C. Powers, M. I. Gonzalez, D. G. Nocera. Chem. Commun.56, 5247 (2020).10.1039/C9CC09892ESearch in Google Scholar

[105] R. A. Eikey, S. I. Khan, M. M. Abu-Omar. Angew. Chem. Int. Ed.41, 3591 (2002).10.1002/1521-3773(20021004)41:19<3591::AID-ANIE3591>3.0.CO;2-ZSearch in Google Scholar

[106] N. Y. Edwards, R. A. Eikey, M. I. Loring, M. M. Abu-Omar. Inorg. Chem.44, 3700 (2005).10.1021/ic0484506Search in Google Scholar PubMed

[107] H.-Q. Yuan, H.-H. Wang, J. Kandhadi, H. Wang, S.-Z. Zhan, H.-Y. Liu. Appl. Organometal. Chem.31, e3773 (2017).Search in Google Scholar

[108] J. Grodkowski, P. Neta, E. Fujita, A. Mahammed, L. Simkhovich, Z. Gross. J. Phys. Chem. A106, 4772 (2002).10.1021/jp013668oSearch in Google Scholar

Published Online: 2020-09-28
Published in Print: 2020-12-16

© 2020 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1515/pac-2020-0703/html
Scroll to top button