Skip to main content
Log in

A writable lithium metal ink

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The recent revival of Li metal anodes (LMA) leads to a renewed interest in LMA as the ultimate choice for rechargeable lithium batteries towards high energy density. However, multiple challenges stand in the way of using LMA, of which high reactivity, dendrite growth, the difficulty of fabricating Li thin foils, and the flammability of organic liquid electrolytes are typical. Here, a writable Li metal ink (LMI) prepared by introducing biomass-derived carbon particles into molten Li is presented. Due to the significantly decreased surface tension, LMI is able to directly write on copper foils or other substrates that ultrathin Li foils with a remarkably small thickness (<10 µm) can be achieved. The versatility of LMI is further demonstrated in addressing the interface issue between LMA and garnet-type solid-state electrolytes, where directly writing LMI on the garnet offers a perfect contact and enables an extremely low interfacial resistance of 6 Ω cm2, in sharp contrast to 939 Ω cm2 between the pure Li and the garnet. Due to the successful partnership with non-flammable solid-state electrolytes, ink-based technology may have a chance to bring us very close to the use of solid-state lithium metal batteries (SSLMBs) with high safety and high energy density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen L, Fan X, Ji X, Chen J, Hou S, Wang C. Joule, 2019, 3: 732–744

    CAS  Google Scholar 

  2. Hafez AM, Jiao Y, Shi J, Ma Y, Cao D, Liu Y, Zhu H. Adv Mater, 2018, 30: 1802156

    Google Scholar 

  3. Liu S, Deng L, Guo W, Zhang C, Liu X, Luo J. Adv Mater, 2019, 31: 1807585

    Google Scholar 

  4. Niu C, Lee H, Chen S, Li Q, Du J, Xu W, Zhang JG, Whittingham MS, Xiao J, Liu J. Nat Energy, 2019, 4: 551–559

    CAS  Google Scholar 

  5. Goodenough JB, Gao H. Sci China Chem, 2019, 62: 1555–1556

    CAS  Google Scholar 

  6. Guo X, Ding Y, Xue L, Zhang L, Zhang C, Goodenough JB, Yu G. Adv Funct Mater, 2018, 28: 1804649

    Google Scholar 

  7. Guo Y, Li H, Zhai T. Adv Mater, 2017, 29: 1700007

    Google Scholar 

  8. Zhao CZ, Duan H, Huang JQ, Zhang J, Zhang Q, Guo YG, Wan LJ. Sci China Chem, 2019, 62: 1286–1299

    CAS  Google Scholar 

  9. Liang X, Pang Q, Kochetkov IR, Sempere MS, Huang H, Sun X, Nazar LF. Nat Energy, 2017, 2: 17119

    CAS  Google Scholar 

  10. Pang Q, Liang X, Shyamsunder A, Nazar LF. Joule, 2017, 1: 871–886

    CAS  Google Scholar 

  11. Fan X, Chen L, Ji X, Deng T, Hou S, Chen J, Zheng J, Wang F, Jiang J, Xu K, Wang C. Chem, 2018, 4: 174–185

    CAS  Google Scholar 

  12. Ma G, Wen Z, Wu M, Shen C, Wang Q, Jin J, Wu X. Chem Commun, 2014, 50: 14209–14212

    CAS  Google Scholar 

  13. Fan L, Li S, Liu L, Zhang W, Gao L, Fu Y, Chen F, Li J, Zhuang HL, Lu Y. Adv Energy Mater, 2018, 8: 1802350

    Google Scholar 

  14. Zhang C, Huang Z, Lv W, Yun Q, Kang F, Yang QH. Carbon, 2017, 123: 744–755

    CAS  Google Scholar 

  15. Duan H, Zhang J, Chen X, Zhang XD, Li JY, Huang LB, Zhang X, Shi JL, Yin YX, Zhang Q, Guo YG, Jiang L, Wan LJ. J Am Chem Soc, 2018, 140: 18051–18057

    CAS  PubMed  Google Scholar 

  16. Yun Q, He YB, Lv W, Zhao Y, Li B, Kang F, Yang QH. Adv Mater, 2016, 28: 6932–6939

    CAS  PubMed  Google Scholar 

  17. Bai S, Liu X, Zhu K, Wu S, Zhou H. Nat Energy, 2016, 1: 16094

    CAS  Google Scholar 

  18. Liu Y, Liu Q, Xin L, Liu Y, Yang F, Stach EA, Xie J. Nat Energy, 2017, 2: 17083

    CAS  Google Scholar 

  19. Zhao CZ, Chen PY, Zhang R, Chen X, Li BQ, Zhang XQ, Cheng XB, Zhang Q. Sci Adv, 2018, 4: eaat3446

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ding F, Xu W, Graff GL, Zhang J, Sushko ML, Chen X, Shao Y, Engelhard MH, Nie Z, Xiao J, Liu X, Sushko PV, Liu J, Zhang JG. J Am Chem Soc, 2013, 135: 4450–4456

    CAS  PubMed  Google Scholar 

  21. Fan X, Chen L, Borodin O, Ji X, Chen J, Hou S, Deng T, Zheng J, Yang C, Liou SC, Amine K, Xu K, Wang C. Nat Nanotech, 2018, 13: 715–722

    CAS  Google Scholar 

  22. Shin W, So KP, Stickle WF, Su C, Lu J, Li J, Ji X. Chem Commun, 2019, 55: 3387–3389

    CAS  Google Scholar 

  23. Suo L, Xue W, Gobet M, Greenbaum SG, Wang C, Chen Y, Yang W, Li Y, Li J. Proc Natl Acad Sci USA, 2018, 115: 1156–1161

    CAS  PubMed  Google Scholar 

  24. Niu C, Pan H, Xu W, Xiao J, Zhang JG, Luo L, Wang C, Mei D, Meng J, Wang X, Liu Z, Mai L, Liu J. Nat Nanotechnol, 2019, 14: 594–601

    CAS  PubMed  Google Scholar 

  25. Manthiram A, Yu X, Wang S. Nat Rev Mater, 2017, 2: 16103

    CAS  Google Scholar 

  26. Nolan AM, Zhu Y, He X, Bai Q, Mo Y. Joule, 2018, 2: 2016–2046

    CAS  Google Scholar 

  27. Sun YG, Sun TQ, Lin XJ, Tao XS, Zhang D, Zeng C, Cao AM, Wan LJ. Sci China Chem, 2018, 61: 670–676

    CAS  Google Scholar 

  28. Yao X, Huang B, Yin J, Peng G, Huang Z, Gao C, Liu D, Xu X. Chin Phys B, 2016, 25: 018802

    Google Scholar 

  29. Chen R, Qu W, Guo X, Li L, Wu F. Mater Horiz, 2016, 3: 487–516

    CAS  Google Scholar 

  30. Murugan R, Thangadurai V, Weppner W. Angew Chem Int Ed, 2007, 46: 7778–7781

    CAS  Google Scholar 

  31. Tong X, Thangadurai V, Wachsman ED. Inorg Chem, 2015, 54: 3600–3607

    CAS  PubMed  Google Scholar 

  32. Thangadurai V, Narayanan S, Pinzaru D. Chem Soc Rev, 2014, 43: 4714–4727

    CAS  PubMed  Google Scholar 

  33. Dai J, Yang C, Wang C, Pastel G, Hu L. Adv Mater, 2018, 30: 1802068

    Google Scholar 

  34. Sun T, Feng L, Gao X, Jiang L. Acc Chem Res, 2005, 38: 644–652

    CAS  PubMed  Google Scholar 

  35. Cheng Z, Gao J, Jiang L. Langmuir, 2010, 26: 8233–8238

    CAS  PubMed  Google Scholar 

  36. Cheng Z, Lai H, Du Y, Fu K, Hou R, Li C, Zhang N, Sun K. ACS Appl Mater Interfaces, 2014, 6: 636–641

    CAS  PubMed  Google Scholar 

  37. Vanzo D, Bratko D, Luzar A. J Phys Chem C, 2012, 116: 15467–15473

    CAS  Google Scholar 

  38. Xiu Y, Zhu L, Hess DW, Wong CP. Nano Lett, 2007, 7: 3388–3393

    CAS  PubMed  Google Scholar 

  39. Cheng L, Chen W, Kunz M, Persson K, Tamura N, Chen G, Doeff M. ACS Appl Mater Interfaces, 2015, 7: 2073–2081

    CAS  PubMed  Google Scholar 

  40. Fu J, Yu P, Zhang N, Ren GX, Zheng S, Huang W, Long X, Li H, Liu X. Energy Environ Sci, 2019, 12: 1404–1412

    CAS  Google Scholar 

  41. Fu KK, Gong Y, Hitz GT, McOwen DW, Li Y, Xu S, Wen Y, Zhang L, Wang C, Pastel G, Dai J, Liu B, Xie H, Yao Y, Wachsman ED, Hu L. Energy Environ Sci, 2017, 10: 1568–1575

    CAS  Google Scholar 

  42. Wang Q, Wen Z, Jin J, Guo J, Huang X, Yang J, Chen C. Chem Commun, 2016, 52: 1637–1640

    CAS  Google Scholar 

  43. Han X, Gong Y, Fu KK, He X, Hitz GT, Dai J, Pearse A, Liu B, Wang H, Rubloff G, Mo Y, Thangadurai V, Wachsman ED, Hu L. Nat Mater, 2017, 16: 572–579

    CAS  PubMed  Google Scholar 

  44. Liao KS, Fu H, Wan A, Batteas JD, Bergbreiter DE. Langmuir, 2009, 25: 26–28

    PubMed  Google Scholar 

  45. Lim JE, Lee SM, Kim SS, Kim TW, Koo HW, Kim HK. Sci Rep, 2017, 7: 14685

    PubMed  PubMed Central  Google Scholar 

  46. Shin SR, Farzad R, Tamayol A, Manoharan V, Mostafalu P, Zhang YS, Akbari M, Jung SM, Kim D, Comotto M, Annabi N, Al-Hazmi FE, Dokmeci MR, Khademhosseini A. Adv Mater, 2016, 28: 3280–3289

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang X, Li XM, Kong QQ, Liu Z, Chen JP, Jia H, Liu YZ, Xie LJ, Chen CM. Sci China Mater, 2020, 63: 392–402

    CAS  Google Scholar 

  48. Alchagirov BB, Afaunova LK, Dyshekova FF, Mozgovoi AG, Taova TM, Arkhestov RK. High Temp, 2009, 47: 287–291

    CAS  Google Scholar 

  49. Wang J, Wang H, Xie J, Yang A, Pei A, Wu CL, Shi F, Liu Y, Lin D, Gong Y, Cui Y. Energy Storage Mater, 2018, 14: 345–350

    Google Scholar 

  50. Wang SH, Yue J, Dong W, Zuo TT, Li JY, Liu X, Zhang XD, Liu L, Shi JL, Yin YX, Guo YG. Nat Commun, 2019, 10: 4930

    PubMed  PubMed Central  Google Scholar 

  51. Wang C, Xie H, Zhang L, Gong Y, Pastel G, Dai J, Liu B, Wachsman ED, Hu L. Adv Energy Mater, 2018, 8: 1701963

    Google Scholar 

  52. Huang X, Xiu T, Badding ME, Wen Z. Ceramics Int, 2018, 44: 5660–5667

    CAS  Google Scholar 

  53. Ishiguro K, Nemori H, Sunahiro S, Nakata Y, Sudo R, Matsui M, Takeda Y, Yamamoto O, Imanishi N. J Electrochem Soc, 2014, 161: A668–A674

    CAS  Google Scholar 

  54. Zhang T, Imanishi N, Hirano A, Takeda Y, Yamamoto O. Electrochem Solid-State Lett, 2011, 14: A45

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51802224), “Shanghai Rising-Star Program” (19QA1409300) and the open fund of Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies (EEST2018-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Luo.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Duan, J., Wen, J. et al. A writable lithium metal ink. Sci. China Chem. 63, 1483–1489 (2020). https://doi.org/10.1007/s11426-020-9810-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9810-1

Keywords

Navigation