Skip to main content

Advertisement

Log in

Optimal power allocation and harvesting duration for mixed RF/FSO using Non Orthogonal Multiple Access

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, we suggest to optimize power allocation coefficients and harvesting duration in mixed Radio Frequency (RF)/Free Space Optical (FS0) communications using Non Orthogonal Multiple Access (NOMA). The system model contains three time slots. In the first time slot, relay node R harvests energy from RF signal received from node H. Node H can be any node transmitting RF signals. In the second time slot, an FSO transmitter T transmits a linear combination of symbols of K users to relay node R using NOMA. In the third and last slot, relay R detects the receive symbols and sends a linear combination of detected symbols to K users using NOMA. We show that power allocation and harvesting duration optimization allow to increase the throughput of RF/FSO communications. We consider two users’ ranking techniques using average or instantaneous channel gains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Abd El-Malek, A.H., Aboulhassan, M.A., Salhab, A.M., Zummo, S.A.: Performance analysis and power optimization for spectrum-sharing mixed RF/FSO relay networks with energy harvesting. IEEE Photonics J. 11(2), 1–17 (2019)

    Article  Google Scholar 

  • Abou-Rjeily, C., Kaddoum, G.: Free space optical cooperative communications via an energy harvesting harvest-store-use relay. IEEE Trans. Wirel. Commun. 1–13 (2020) (Early Access Article)

  • Abou-Rjeily, C.: Packet unloading strategies for buffer-aided multiuser mixed RF/FSO relaying. IEEE Wirel. Commun. Lett. 9(7): 1051–1055 (2020) (Early access article)

  • Alathwary, W.A., Altubaishi, E.S.: Outage performance of multiuser mixed RF/parallel relay-assisted FSO systems. In: 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT) (2019)

  • Al-Ebraheemy, O.M.S., Salhab, A.M., Chaaban, A., Anas, Z., Salam, A., Alouini, M.-S.: Precise performance analysis of dual-hop mixed RF/unified-FSO DF relaying with heterodyne detection and two IM-DD channel models. IEEE Photonics J. 11(1), 1–22 (2019)

    Article  Google Scholar 

  • Al-Eryani, Y.F., Salhab, A.M., Zummo, S.A., Alouini, M.-S.: Protocol design and performance analysis of multiuser mixed RF and hybrid FSO/RF relaying with buffers. IEEE/OSA J. Opt. Commun. Netw. 10(4), 309–321 (2018)

    Article  Google Scholar 

  • Anees, S., Bhatnagar, M.R., Ram, P.: On the performance of DF based mixed triple-hop RF-FSO-RF cooperative system. In: 2017 International Conference on Recent Innovations in Signal processing and Embedded Systems (RISE) (2017)

  • Ansari, I.S., Yilmaz, F., Alouini, M.-S.: On the performance of mixed RF/FSO variable gain dual-hop transmission systems with pointing errors. In: 2013 IEEE 78th Vehicular Technology Conference (VTC Fall) (2013)

  • Ashrafzadeh, B., Soleimani-Nasab, E., Kamandar, M., Uysal, M.: A framework on the performance analysis of dual-hop mixed FSO-RF cooperative systems. IEEE Trans. Commun. 67(7), 4939–4954 (2019)

    Article  Google Scholar 

  • Chen, J., Yang, L., Wang, W., Yang, H.-C., Liu, Y., Hasna, M.O., Alouini, M.-S.: A novel energy harvesting scheme for mixed FSO-RF relaying systems. IEEE Trans. Veh. Technol. 68(8), 8259–8263 (2019)

    Article  Google Scholar 

  • Jamali, M.V., Azimi-Abarghouyi, S.M., Mahdavifar, H.: Outage probability analysis of uplink NOMA over ultra-high-speed FSO-backhauled systems. In: IEEE GLOBECOM (2018)

  • Jamali, M.V., Mahdavifar, H.: Uplink non-orthogonal multiple access over mixed RF-FSO systems. IEEE Trans. Wirel. Commun. 9(5), 3558–3574 (2020) (Early Access Article)

  • Kamga, G.N., Aïssa, S., Rasethuntsa, T.R., Alouini, M.-S.: Mixed RF/FSO communications with outdated-CSI-based relay selection under double generalized gamma turbulence, generalized pointing errors and Nakagami-m fading. IEEE Trans. Wirel. Commun 1–15 (2019) (Early Access article )

  • Labghough, S., Ayoub, F., Belkasmi, M.: Error probability analysis for dual-hop mixed RF-FSO system using CSOC codes with MLGD decoding. In: 2019 15th International Wireless Communications and Mobile Computing Conference (IWCMC) (2019)

  • Lee, J.-H., Park, K.-H., Alouini, M.-S., Ko, Y.-C.: On the throughput of mixed FSO/RF UAV-enabled mobile relaying systems with a buffer constraint. In: ICC 2019, IEEE International Conference on Communications (ICC)

  • Li, L., Cai, R., Jiang, H., Su, X.: Rate-energy tradeoff for SWIPT systems with multi-user interference channels under non-linear energy harvesting model. In: 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring) (2019)

  • Liu, Y., Ding, Z., Elkashlan, M., Poor, H.V.: Cooperative non-orthogonal multiple access with simultaneous wireless information and power transfer. IEEE J. Sel. Areas Commun. 34(4), 938–953 (2016)

    Article  Google Scholar 

  • Najafi, M., Jamali, V., Diamantoulakis, P.D., Karagiannidis, G.K., Schober, R.: Non-orthogonal multiple access for FSO backhauling. In: 2018 IEEE Wireless Communications and Networking Conference (WCNC), 2018, Conference Paper (2018)

  • Petkovic, M.I., Trpovski, Z.: Exact outage probability analysis of the mixed RF/FSO system with variable-gain relays. IEEE Photonics J. 10(6), 1–14 (2018)

    Article  Google Scholar 

  • Proakis, J.: Digital Communications, 5th edn. McGraw-Hill, New York (2007)

    MATH  Google Scholar 

  • Sun, H., Zhou, F., Hu, R.Q., Hanzo, L.: Robust beamforming design in a NOMA cognitive radio network relying on SWIPT. IEEE J. Sel. Areas Commun. 37(1), 142–155 (2019)

    Article  Google Scholar 

  • Upadhya, A., Dwivedi, V.K., Alouini, M.-S.: Interference-limited mixed MUD-RF/FSO two-way cooperative networks over double generalized gamma turbulence channels. IEEE Commun. Lett. 23(9), 1551–1555 (2019)

    Article  Google Scholar 

  • Vaughan, R.J., Venables, W.N.: Permanent expressions for order statistics densities. J. R. Stat. Soc. Ser. B 34, 308–310 (1972)

    MathSciNet  MATH  Google Scholar 

  • Wang, Y., Yue, P., Yi, X.,Shen, C.: Exact performance analysis for mixed K-\(\mu\) shadowed and exponentiated Weibull distributed dual-hop RF/FSO systems. In: 2019 IEEE/CIC International Conference on Communications in China (ICCC)

  • Xi, Y., Burr, A., Wei, J.B., Grace, D.: A general upper bound to evaluate packet error rate over quasi-static fading channels. IEEE Trans. Wirel. Commun. 10(5), 1373–1377 (2011)

    Article  Google Scholar 

  • Yi, X., Shen, C., Yue, P., Wang, Y., Ao, Q., Zhao, P.: Performance analysis for a mixed RF and multihop FSO communication system in 5G C-RAN. IEEE/OSA J. Opt. Commun. Netw. 11(8), 452–464 (2019)

    Article  Google Scholar 

  • Zhong, C., Zhang, Z.: Non-orthogonal multiple access with cooperative full-duplex relaying. IEEE Commun. Lett. 20(12), 2478–2481 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadhir Ben Halima.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Performance analysis with nonlinear energy harvesting model

Appendix: Performance analysis with nonlinear energy harvesting model

For a nonlinear energy harvesting model \(E_{nonlinear}=\Psi (E)\), the CDF of \(E_{nonlinear}\) is computed as

$$\begin{aligned} F_{E_{nonlinear}}(x)=F_{E}(\Psi ^{-1}(x))=1-e^{-\frac{\Psi ^{-1}(x)}{\epsilon L_0 \lambda _{HR}E_H\zeta }} \end{aligned}$$
(51)

where

$$\begin{aligned} \Psi ^{-1}(x)=\frac{ln(y)+ln(M)+ab-ln(M-y)}{2a} \end{aligned}$$
(52)

Variable \(V_i=E_R|h_i|^2\) should be replaced by

$$\begin{aligned} V_{i,nonlinear}=\frac{E_{nonlinear}|h_i|^2}{0.5(1-\zeta )L_0}. \end{aligned}$$
(53)

The throughput of mixed RF/FSO is computed as Sects. 3 and 4 where the CDF \(F_{V_i}(x)\) should be replaced by \(F_{V_{i,nonlinear}}(x)\) given by

$$\begin{aligned} F_{V_{i,nonlinear}}(x) &= \int _0^{+\infty }F_{E_{nonlinear}}\left( \frac{0.5(1-\zeta )L_0x}{y}\right) \frac{e^{-\frac{y}{\lambda _i}}}{\lambda _i}dy,\nonumber \\ &= 1-\int _0^{+\infty }e^{-\frac{\Psi ^{-1}\left( \frac{0.5(1-\zeta )L_0x}{y}\right) }{L_0 \epsilon \lambda _{HR}E_H\zeta }}\frac{e^{-\frac{y}{\lambda _i}}}{\lambda _i}dy. \end{aligned}$$
(54)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Halima, N., Boujemaa, H. Optimal power allocation and harvesting duration for mixed RF/FSO using Non Orthogonal Multiple Access. Opt Quant Electron 52, 442 (2020). https://doi.org/10.1007/s11082-020-02560-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02560-w

Keywords

Navigation