Skip to main content

Advertisement

Log in

Revisit to the synthesis of 1,2,3,4-tetrasubstituted pyrrole derivatives in lactic acid media as a green solvent and catalyst

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

In this study, for the first time, lactic acid was used as a bio-based green catalyst and reaction medium for the synthesis of 1,2,3,4-tetrasubstituted pyrrole derivatives from one-pot three-component reaction of commercially available primary amines, 1,3-dicarbonyl compounds, and trans-β-nitrostyrene at room temperature. Thirty-three corresponding pyrroles, of which eight are novel and have been reported for the first time, were synthesized in high to excellent yields in lactic acid media and characterized by spectroscopic analysis. In all examined cases, lactic acid represented many advantages, including shorter reaction time, ease of product isolation, higher yields, no by-products, no chromatographic process, and lower volatility in the reaction. This bio-based green solvent can also be recycled and reused three times without loss of its efficiency as a catalyst and solvent.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1

Similar content being viewed by others

References

  1. Gholap SS (2016) Pyrrole: an emerging scaffold for construction of valuable therapeutic agents. Eur J Med Chem 110:13–31. https://doi.org/10.1016/j.ejmech.2015.12.017

    Article  CAS  PubMed  Google Scholar 

  2. Fan H, Peng J, Hamann MT, Hu JF (2008) Lamellarins and related pyrrole-derived alkaloids from marine organisms. Chem Rev 108:264–287. https://doi.org/10.1021/cr078199m

    Article  CAS  PubMed  Google Scholar 

  3. Heugebaert TSA, Roman BI, Stevens CV (2012) Synthesis of isoindoles and related iso-condensed heteroaromatic pyrroles. Chem Soc Rev 41:5626–5640. https://doi.org/10.1039/C2CS35093A

    Article  CAS  PubMed  Google Scholar 

  4. Urban S, Butler MS, Capon RJ (1994) Lamellarins O and P: New aromatic metabolites from the Australian marine sponge Dendrilla cactos. Aust J Chem 47(10):1919–1924. https://doi.org/10.1071/CH9941919

    Article  CAS  Google Scholar 

  5. Boger DL, Boyce CW, Labroli MA, Sehon CA, Jin Q (1999) Total syntheses of Ningalin A, Lamellarin O, Lukianol A, and permethyl storniamide a utilizing heterocyclic azadiene Diels–Alder reactions. J Am Chem Soc 121(1):54–62. https://doi.org/10.1021/ja982078+

    Article  CAS  Google Scholar 

  6. Furstner A, Weintritt H, Hupperts A (1995) A new, titanium-mediated approach to pyrroles: first synthesis of Lukianol A and Lamellarin O Dimethyl Ether. J Org Chem 60(20):6637–6641. https://doi.org/10.1021/jo00125a068

    Article  Google Scholar 

  7. Boger DL, Soenen DR, Boyce CW, Hedrick MP, Jin Q (2000) Total synthesis of ningalin B utilizing a heterocyclic azadiene Diels–Alder reaction and discovery of a new class of potent multidrug resistant (MDR) reversal agents. J Org Chem 65(8):2479–2483. https://doi.org/10.1021/jo9916535

    Article  CAS  PubMed  Google Scholar 

  8. Bullington JL, Wolff RR, Jackson PF (2002) Regioselective preparation of 2-substituted 3,4-diaryl pyrroles: a concise total synthesis of ningalin B. J Org Chem 67:9439–9442. https://doi.org/10.1021/jo026445i

    Article  CAS  PubMed  Google Scholar 

  9. North PC, Oxford AW (1988) Preparation of 1-aryl-3-imidazolyl-1-propanones as serotonin antagonists. European Patent Application EP 291172 A1 19881117, CAN 110: 173233

  10. Kawai A, Kawai M, Murata Y, Takada J, Sakakibara M (1998) Preparation of pyridylpyrroles as interleukin and tumor necrosis factor antagonists. WO 9802430 A119980122, CAN 128:140613

  11. Fischer PM, Wang S, Wood G (2002) Preparation of 4-(1H-pyrrolyl)pyrimidin-2-ylamines as inhibitors of cyclin dependent kinases for treating cancer. WO 2002079193 A1 20021010, CAN 137:294968

  12. Wang S, Wood G, Meades C, Griffiths G, Midgley C, McNae I et al (2004) Synthesis and biological activity of 2-anilino-4-(1H-pyrrol-3-yl) pyrimidine CDK inhibitors. Bioorg Med Chem Lett 14(16):4237–4240. https://doi.org/10.1016/j.bmcl.2004.06.012

    Article  CAS  PubMed  Google Scholar 

  13. Lehr M (1997) Structure–activity relationships of (4-acylpyrrol-2-yl)alkanoic acids as inhibitors of the cytosolic phospholipase A2: variation of the substituents in positions 1, 3, and 5. J Med Chem 40(21):3381–3392. https://doi.org/10.1021/jm970045j

    Article  CAS  PubMed  Google Scholar 

  14. Novozhilov YV, Dorogov MV, Blumina MV, Smirnov AV, Krasavin M (2015) An improved kilogram-scale preparation of atorvastatin calcium. Chem Cent J 9:7. https://doi.org/10.1186/s13065-015-0082-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Artico M, Corelli F, Massa S, Stefancich G (1982) Non-steroidal antiinflammatory agents. 1. A novel synthesis of 1-methyl-5-p-tolylpyrrole-2-acetic acid (tolmetin). J Heterocycl Chem 19(6):1493. https://doi.org/10.1002/jhet.5570190647

    Article  CAS  Google Scholar 

  16. Muller P, Polleux P (1998) Synthesis of a ketorolac model via aromatic carbenoid insertion. Helv Chim Acta 81:317–323. https://doi.org/10.1002/hlca.19980810212

    Article  Google Scholar 

  17. Radl S, Cerny J, Klecan O, Stach J, Placek L, Mandelova Z (2008) A synthesis of licofelone using Fenton’s reagent. Tetrahedron Lett 49(36):5316–5318. https://doi.org/10.1016/j.tetlet.2008.06.078

    Article  CAS  Google Scholar 

  18. Papaetis GS, Syrigos KN (2009) Sunitinib: a multitargeted receptor tyrosine kinase inhibitor in the era of molecular cancer therapies. BioDrugs 23(6):377–389. https://doi.org/10.2165/11318860-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  19. Denny WA, Rewcastle GW, Baguley BC (1990) Potential antitumor agents. 59. Structure–activity relationships for 2-phenylbenzimidazole-4-carboxamides, a new class of minimal DNA-intercalating agents which may not act via topoisomerase II. J Med Chem 33(2):814–819. https://doi.org/10.1021/jm00164a054

    Article  CAS  PubMed  Google Scholar 

  20. Hwang Y, Rhodes D, Bushman F (2000) Rapid microtiter assays for poxvirus topoisomerase, mammalian type IB topoisomerase and HIV-1 integrase: application to inhibitor isolation. Nucleic Acids Res 28(24):4884–4892. https://doi.org/10.1093/nar/28.24.4884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Burli RW, McMinn D, Kaizerman JA, Hu W, Ge Y, Pack Q, Jiang V et al (2004) DNA binding ligands targeting drug-resistant Gram-positive bacteria. Part 1: internal benzimidazole derivatives. Bioorg Med Chem Lett 14(5):1253–1257. https://doi.org/10.1016/j.bmcl.2003.12.042

    Article  CAS  PubMed  Google Scholar 

  22. Del Poeta M, Schell WA, Dykstra CC, Jones S et al (1998) Structure-in vitro activity relationships of pentamidine analogues and dication-substituted bis-benzimidazoles as new antifungal agents. Antimicrob Agents Chemother 42(10):2495–2502. https://doi.org/10.1128/AAC.42.10.2495

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kunfermann A, Witschel M, Illarionov B, Martin R, Rottmann M, Höffken HW, Seet M et al (2014) Pseudilins: halogenated, allosteric inhibitors of the non-mevalonate pathway enzyme IspD. Angew Chem Int Ed 53(8):2235–2239. https://doi.org/10.1002/anie.201309557

    Article  CAS  Google Scholar 

  24. Lehuede J, Fauconneau B, Barrier L, Ourakow M, Piriou A, Vierfond JM (1999) Synthesis and antioxidant activity of new tetraarylpyrroles. Eur J Med Chem 34(11):991–996. https://doi.org/10.1016/s0223-5234(99)00111-7

    Article  CAS  PubMed  Google Scholar 

  25. Jonas R, Klockow M, Lues I, Pruecher H, Schliep HJ, Wurziger H (1993) Synthesis and biological activities of meribendan and related heterocyclic benzimidazolo-pyridazinones. Eur J Med Chem 28:129–140. https://doi.org/10.1016/0223-5234(93)90005-Y

    Article  CAS  Google Scholar 

  26. Toja E, Selva D, Schiatti P (1984) 3-Alkyl-2-aryl-3H-naphth[1,2-d]imidazoles, a novel class of nonacidic antiinflammatory agents. J Med Chem 27:610–616. https://doi.org/10.1021/jm00371a010

    Article  CAS  PubMed  Google Scholar 

  27. Roomi MW, MacDonald SF (1970) The Hantzsch pyrrole synthesis. Can J Chem 48(11):1689–1697. https://doi.org/10.1139/v70-279

    Article  CAS  Google Scholar 

  28. Bonnaterre F, Bois-Choussy M, Zhu J (2006) Rapid access to oxindoles by the combined use of an Ugi four-component reaction and a microwave-assisted intramolecular Buchwald–Hartwig Amidation reaction. Org Lett 8(19):4351–4354. https://doi.org/10.1021/ol061755z

    Article  CAS  PubMed  Google Scholar 

  29. Wang B, Gu Y, Luo C, Yang T, Yang L, Suo J (2004) Sulfamic acid as a cost-effective and recyclable catalyst for liquid Beckmann rearrangement, a green process to produce amides from ketoximes without waste. Tetrahedron Lett 45(17):3369–3372. https://doi.org/10.1016/j.tetlet.2004.03.017

    Article  CAS  Google Scholar 

  30. Estévez V, Villacampa M, Menéndez JC (2014) Recent advances in the synthesis of pyrroles by multicomponent reactions. Chem Soc Rev 43(13):4633–4657. https://doi.org/10.1039/C3CS60015G

    Article  PubMed  Google Scholar 

  31. Balme G (2004) Pyrrole syntheses by multicomponent coupling reactions. Angew Chem Int Ed 43:6238. https://doi.org/10.1002/anie.200461073

    Article  CAS  Google Scholar 

  32. Nair V, Vinod AU, Rajesh C (2001) A novel synthesis of 2-aminopyrroles using a three-component reaction. J Org Chem 66(12):4427–4429. https://doi.org/10.1021/jo001714v

    Article  CAS  PubMed  Google Scholar 

  33. Bharadwaj AR, Scheidt KA (2004) Catalytic multicomponent synthesis of highly substituted pyrroles utilizing a one-pot Sila–Stetter/Paal–Knorr strategy. Org Lett 6(14):2465–2468. https://doi.org/10.1021/ol049044t

    Article  CAS  PubMed  Google Scholar 

  34. Tejedor D, Gonzalez-Cruz D, Garcia-Tellado F, Marrero-Tellado JJ, Rodriguez ML (2004) A diversity-oriented strategy for the construction of tetrasubstituted pyrroles via coupled Domino Processes. J Am Chem Soc 126(27):8390–8391. https://doi.org/10.1021/ja047396p

    Article  CAS  PubMed  Google Scholar 

  35. Lee B, Clothier M, Dutton F, Conder G, Johnson S (1998) Anthelmintic β-hydroxyketoamides (BKAs). Bioorg Med Chem Lett 8(23):3317–3320. https://doi.org/10.1016/S0960-894X(98)00588-5

    Article  CAS  PubMed  Google Scholar 

  36. Jung J, Jung Y, Park O (2001) A Convenient one-pot synthesis of 4-hydroxycoumarin, 4-hydroxythiocoumarin, and 4-hydroxyquinolin-2(1H)-one. Synth Commun 31(8):1195–1200. https://doi.org/10.1081/SCC-100104003

    Article  CAS  Google Scholar 

  37. Maiti S, Biswas S, Jana U (2010) Iron(III)-catalyzed four-component coupling reaction of 1,3-dicarbonyl compounds, amines, aldehydes, and nitroalkanes: a simple and direct synthesis of functionalized pyrroles. J Org Chem 75(5):1674–1683. https://doi.org/10.1021/jo902661y

    Article  CAS  PubMed  Google Scholar 

  38. Khan AT, Lal M, Bagdi PR, Basha RS, Saravanan P, Patra S (2012) Synthesis of tetra-substituted pyrroles, a potential phosphodiesterase 4B inhibitor, through nickel(II) chloride hexahydrate catalyzed one-pot four-component reaction. Tetrahedron Lett 53(32):4145–4150. https://doi.org/10.1016/j.tetlet.2012.05.133

    Article  CAS  Google Scholar 

  39. Reddy GR, Reddy TR, Joseph SC, Reddy KS, Pal M (2012) Iodine catalyzed four-component reaction: a straightforward one-pot synthesis of functionalized pyrroles under metal-free conditions. RSC Adv 2:3387–3395. https://doi.org/10.1039/C2RA00982J

    Article  CAS  Google Scholar 

  40. Gajengi AL, Bhanage BM (2016) NiO nanoparticles: efficient catalyst for four component coupling reaction for synthesis of substituted pyrroles. Catal Lett 146:1341–1347. https://doi.org/10.1007/s10562-016-1762-1

    Article  CAS  Google Scholar 

  41. Khan FAK, Pachpinde AM, Langade MM et al (2016) Pr3+ doped CoFe2O4: a highly efficient, magnetically recoverable and reusable catalyst for one-pot four-component synthesis of multisubstituted pyrroles. Iran J Catal 6(4):333–338

    CAS  Google Scholar 

  42. Bharate JB, Sharma R, Si Aravinda, Gupta VK, Singh B, Bharate SB, Vishwakarma RA (2013) Montmorillonite clay catalyzed synthesis of functionalized pyrroles through domino four-component coupling of amines, aldehydes, 1,3-dicarbonyl compounds and nitroalkanes. RSC Adv 3:21736–21742. https://doi.org/10.1039/C3RA43324B

    Article  CAS  Google Scholar 

  43. Bagdi PR, Basha RS, Lal M, Khan AT (2013) Bromodimethylsulfonium bromide (BDMS)-catalyzed synthesis of substituted pyrroles through a one-pot four-component reaction. Chem Lett 42(8):939–941. https://doi.org/10.1246/cl.130317

    Article  CAS  Google Scholar 

  44. Murthi PRK, Rambabu D, Rao MVB, Pal M (2014) Synthesis of substituted pyrroles via Amberlyst-15 mediated MCR under ultrasound. Tetrahedron Lett 55(2):507–509. https://doi.org/10.1016/j.tetlet.2013.11.073

    Article  CAS  Google Scholar 

  45. Li BL, Li PH, Fang XN, Li CX, Sun JL, Mo LP, Zhang ZH (2013) One-pot four-component synthesis of highly substituted pyrroles in gluconic acid aqueous solution. Tetrahedron 69(34):7011–7018. https://doi.org/10.1016/j.tet.2013.06.049

    Article  CAS  Google Scholar 

  46. Meshram HM, Babu BM, Kumar GS, Thakur PB, Bangade VM (2013) Catalyst-free four-component protocol for the synthesis of substituted pyrroles under reusable reaction media. Tetrahedron Lett 54(19):2296–2302. https://doi.org/10.1016/j.tetlet.2013.01.098

    Article  CAS  Google Scholar 

  47. Hu H-C, Liu Y-H, Li B-L, Cui Z-S, Zhang Z-H (2015) Deep eutectic solvent based on choline chloride and malonic acid as an efficient and reusable catalytic system for one-pot synthesis of functionalized pyrroles. RSC Adv 5:7720–7728. https://doi.org/10.1039/C4RA13577F

    Article  CAS  Google Scholar 

  48. Jadhav NC, Jagadhane PB, Patile HV, Telvekar VN (2013) Three-component direct synthesis of substituted pyrroles from easily accessible chemical moieties using hypervalent iodine reagent. Tetrahedron Lett 54(23):3019–3021. https://doi.org/10.1016/j.tetlet.2013.04.014

    Article  CAS  Google Scholar 

  49. Silveira CC, Mendes SR, Martins GM, Schlosser SC, Kaufman TS (2013) Modular CeCl3·7H2O-catalyzed multi-component synthesis of 1,2,3,4-tetrasubstituted pyrroles under microwave irradiation and their further trichloroisocyanuric acid-mediated conversion into 5-sulfenylpyrrole derivatives. Tetrahedron 69(43):9076–9085. https://doi.org/10.1016/j.tet.2013.08.035

    Article  CAS  Google Scholar 

  50. Sheldon R (2017) The E factor 25 years on: the rise of green chemistry and sustainability. Green Chem 19:18–43. https://doi.org/10.1039/C6GC02157C

    Article  CAS  Google Scholar 

  51. Dolzhenko AV, Dolzhenko AV (2015) Chapter 5—Green solvents for eco-friendly synthesis of bioactive heterocyclic compounds. Green synthetic approaches for biologically relevant heterocycles. Elsevier, Amsterdam, pp 101–139. https://doi.org/10.1016/b978-0-12-800070-0.00005-0

  52. Wan J-P, Lin Y, Hua K, Liu Y (2014) Metal-free synthesis of 1,3,5-trisubstituted benzenes by the cyclotrimerization of enaminones or alkynes in water. RSC Adv 4:20499–20505. https://doi.org/10.1039/C4RA00475B

    Article  CAS  Google Scholar 

  53. Li Y-H, Wang L-t, Wang Z, Yuan S, Wu S, Wang S-F (2016) Ultrasound-assisted synthesis of novel pyrrole dihydropyrimidinones in lactic acid. ChemistrySelect 1(21):6855–6858. https://doi.org/10.1002/slct.201601438

    Article  CAS  Google Scholar 

  54. Yang J, Tana J-N, Gu Y (2012) Lactic acid as an invaluable bio-based solvent for organic reactions. Green Chem 14:3304–3317. https://doi.org/10.1039/C2GC36083G

    Article  CAS  Google Scholar 

  55. Wang SF, Guo CL, Cui KK, Zhu YT, Ding JX, Zou XY, Li YH (2015) Lactic acid as an invaluable green solvent for ultrasound-assisted scalable synthesis of pyrrole derivatives. Ultrason Sonochem 26:81–86. https://doi.org/10.1016/j.ultsonch.2015.01.002

    Article  CAS  PubMed  Google Scholar 

  56. Kangani M, Hazeri N, Maghsoodlou MT (2017) Synthesis of pyrrole and furan derivatives in the presence of lactic acid as a catalyst. J Saudi Chem Soc 21:160–164. https://doi.org/10.1016/j.jscs.2015.03.002

    Article  CAS  Google Scholar 

  57. Kangani M, Hazeri N, Yazdani-Elah-Abadi A, Maghsoodlou MT (2017) Lactic acid: an efficient and green catalyst for the one-pot five-components synthesis of highly substituted piperidines. Polycycl Aromat Compd 38:322–328. https://doi.org/10.1080/10406638.2016.1207686

    Article  CAS  Google Scholar 

  58. Fatahpour M, Hazeri N, Maghsoodlou MT, Lashkari M (2018) Lactic acid: a new application as an efficient catalyst for the green one-pot synthesis of 2-hydroxy-12-aryl-8, 9, 10, 12-tetrahydrobenzo[a]xanthene-11-one and 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-one Analogs. Iran. J Sci Technol Trans A Sci 42:533–538. https://doi.org/10.1007/s40995-016-0064-1

    Article  Google Scholar 

  59. Fatahpour M, Hazeri N, Maghsoodlou MT, Lashkari M (2019) Metal-free greener method for the synthesis of densely functionalized pyrroles via a one-pot three-component reaction. J Iran Chem Soc 16:111–116. https://doi.org/10.1007/s13738-018-1486-9

    Article  CAS  Google Scholar 

  60. Tazeh KS, Hazeri N, Fatahpour M, Oudi M, Ahmadi R (2019) Lactic acid as a highly efficient and simplified biocatalyst system for one-step synthesis of multisubstituted pyrroles. Iran J Sci Technol Trans A Sci 43:2213–2218. https://doi.org/10.1007/s40995-018-0657-y

    Article  Google Scholar 

  61. Atar AB, Jeong YT (2013) Heterogenized tungsten complex: an efficient and high yielding catalyst for the synthesis of structurally diverse tetra substituted pyrrole derivatives via four-component assembly. Tetrahedron Lett 54(41):5624–5628. https://doi.org/10.1016/j.tetlet.2013.08.016

    Article  CAS  Google Scholar 

  62. Li BL, Zhang M, Hu HC, Du X, Zhang ZH (2014) Nano-CoFe2O4 supported molybdenum as an efficient and magnetically recoverable catalyst for a one-pot, four-component synthesis of functionalized pyrroles. New J Chem 38:2435–2442. https://doi.org/10.1039/C3NJ01368E

    Article  CAS  Google Scholar 

  63. Gupta N, Singh KN, Singh J (2014) Ionic liquid catalyzed one pot four-component coupling reaction for the synthesis of functionalized pyrroles. J Mol Liq 199:470–473. https://doi.org/10.1016/j.molliq.2014.07.038

    Article  CAS  Google Scholar 

  64. Reddy GR, Reddy TR, Joseph SC, Reddy KS, Meda CLT, Kandale A et al (2012) Yb(OTf)3 mediated MCR: a new and regioselective approach towards polysubstituted pyrroles of pharmacological interest. RSC Adv 2:9142–9150. https://doi.org/10.1039/C2RA21343E

    Article  CAS  Google Scholar 

  65. Tang J, Yang M, Yang M, Wang J, Dong W, Wang G (2015) Heterogeneous Fe-MIL-101 catalysts for efficient one-pot four-component coupling synthesis of highly substituted pyrroles. New J Chem 39:4919–4923. https://doi.org/10.1039/C5NJ00632E

    Article  CAS  Google Scholar 

  66. Sarkar S, Bera K, Maiti S, Biswas S, Jana U (2013) Three-component coupling synthesis of diversely substituted N-aryl pyrroles catalyzed by iron(III) chloride. Synth Commun 43(11):1563–1570. https://doi.org/10.1080/00397911.2011.650273

    Article  CAS  Google Scholar 

  67. Sato H, Hiroi K (2006) Novel thermal iminocyclopropene rearrangements: regioselectivity in the synthesis of pyrroles. Tetrahedron Lett 47(32):5793–5796. https://doi.org/10.1016/j.tetlet.2006.05.185

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work is financially supported by Cukurova University Research Fund Project No.: FDK-2014-3046). The authors are thankful to Dr. Serdar Burmaoglu, Department of Chemistry, Ataturk University, and Burak Kuzu, Department of Pharmaceutical Chemistry, Van Yuzuncu Yil University, for their help in studying spectral analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Sultan Giray or Oztekin Algul.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2559 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbaslar, D., Giray, E.S. & Algul, O. Revisit to the synthesis of 1,2,3,4-tetrasubstituted pyrrole derivatives in lactic acid media as a green solvent and catalyst. Mol Divers 25, 2321–2338 (2021). https://doi.org/10.1007/s11030-020-10122-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-020-10122-1

Keywords

Navigation