Skip to main content
Log in

Impact of Chalcogenophenes on Donor-Acceptor Copolymers for Bulk Heterojunction Solar Cells

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Three new selenophene-based conjugated copolymers having different ratios of the monomeric units were designed, synthesized and thoroughly characterized. The introduction of an electron-poor and surfaced building moiety like selenathiazole was highly efficient in tuning the bandgap and polymer properties. The chalcogenophene-based medium-bandgap polymers demonstrated low-lying HOMO energy levels (∼5.87 eV), which is benign for use in multi-junction polymer solar cell applications. The representative polymers with heavy atoms revealed the change in electronegativity and atomic size that highly affected the molecular property, its topological features, and photovoltaic properties in polymer solar cells. The selenium-substituted (0.5:0.5) polymer donors showed power conversion efficiencies above 3% when combined with [6,6]-phenyl-C71-butyric acid methyl ester (PC70BM) acceptors in a quintessential bulk-heterojunction solar cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Song, C. Li, L. Zhu, J. Guo, J. Xu, X. Zhang, K. Weng, K. Zhang, J. Min, X. Hao, Y. Zhang, F. Liu, and Y. Sun, Adv. Mater., 31, 1905645 (2018).

    Article  Google Scholar 

  2. N. Espinosa, M. Hösel, D. Angmo, and F. C. Krebs, Energy Environ. Sci., 5, 5117 (2012).

    Article  CAS  Google Scholar 

  3. H. Sirringhaus, Adv. Mater., 26, 1319 (2014).

    Article  CAS  Google Scholar 

  4. S. Berny, N. Blouin, A. Distler, H.-J. Egelhaaf, M. Krompiec, A. Lohr, O. R. Lozman, G. E. Morse, L. Nanson, A. Pron, T. Sauermann, N. Seidler, S. Tierney, P. Tiwana, M. Wagner, and H. Wilson, Adv. Sci., 3, 1500342 (2016).

    Article  Google Scholar 

  5. H. Zhou, L. Yang, and W. You, Macromolecules, 45, 607 (2012).

    Article  CAS  Google Scholar 

  6. Y.-W. Su, Y.-C. Lin, and K.-H. Wei, Mater. Chem. A, 5, 24051 (2017).

    Article  CAS  Google Scholar 

  7. S. Antohe, S. Iftimie, L. Hrostea, V. A. Antohe, and M. Girtan, Thin Solid Films, 642, 219 (2017).

    Article  CAS  Google Scholar 

  8. Y. Huang, F. Liu, X. Guo, W. Zhang, Y. Gu, J. Zhang, C. C. Han, T. P. Russell, and J. Hou, Adv. Energy Mater., 3, 930 (2013).

    Article  CAS  Google Scholar 

  9. A. Cetin, C. Istanbulluoglu, S. Özdemir, H. Sevki, C. Cevher, L. Toppare, and A. Cirpan, J. Polym. Sci., Part A: Polym. Chem., 55, 3705 (2017).

    Article  CAS  Google Scholar 

  10. S. W. Kim, J. Choi, T. T. T. Bui, C. Lee, C. Cho, K. Na, J. Jung, C. E. Song, B. Ma, J.-Y. Lee, W. S. Shin, and B. J. Kim, Adv. Funct Mater., 27, 1703070 (2017).

    Article  Google Scholar 

  11. X. Wang, K. Wang, and M. Wang, Polym Chem., 6, 1846 (2015)

    Article  CAS  Google Scholar 

  12. K. H. Hendriks, G. H. L. Heintges, M. M. Wienk and R. A. J. Janssen, J. Mater. Chem A, 2, 17899 (2014).

    Article  CAS  Google Scholar 

  13. C. Duan, K. Gao, J. J. van Franeker, F. Liu, M. M. Wienk, and René A. J. Janssen, J. Am. Chem. Soc., 138, 10782 (2016).

    Article  CAS  Google Scholar 

  14. W. A. Braunecker, S. D. Oosterhout, Z. R. Owczarczyk, N. Kopidakis, E. L. Ratcliff, D. S. Ginley, and D. C. Olson, ACS Macro Lett., 3, 622 (2014).

    Article  CAS  Google Scholar 

  15. S. Zhang, N. E. Bauer, I. Y. Kanal, W. You, G. R. Hutchison, and T. Y. Meyer, Macromolecules, 50, 151 (2017).

    Article  CAS  Google Scholar 

  16. J. Gao, W. Wang, S. Zhang, S. Xiao, C. Zhan, M. Yang, X. Lu, and W. You, Mater. Chem A, 6, 179 (2018).

    Article  CAS  Google Scholar 

  17. Q. Zhang, M. A. Kelly, N. Bauer, and W. You, Acc. Chem. Res., 50, 2401 (2017).

    Article  CAS  Google Scholar 

  18. Z. Ding, J. Kettle, M. Horie, S. W. Chang, G. C. Smith, A. I. Shames, and E. A. Katz, J. Mater. Chem. A, 4, 7274 (2016).

    Article  CAS  Google Scholar 

  19. J.-H. Kim, A. Gadisa, C. Schaefer, H. Yao, B. R. Gautam, N. Balar, M. Ghasemi, I. Constantinou, F. So, B. T. O’Connor, K. Gundogdu, J. Hou, and H. Ade, J. Mater. Chem A, 5, 13176 (2017).

    Article  CAS  Google Scholar 

  20. H. Yao, L. Ye, H. Zhang, S. Li, S. Zhang, and J. Hou, Chem. Rev., 116, 7397(2016).

  21. Z. Li, J. Lu, S. C. Tse, J. Zhou, X. Du, Y. Tao, and J. Ding, J. Mater. Chem., 21, 3226 (2011).

    Article  CAS  Google Scholar 

  22. S. Das, A. Bedi, G. R. Krishna, C. M. Reddy, and S. S. Zade, Org. Biomol. Chem., 9, 6963 (2011).

    Article  CAS  Google Scholar 

  23. E. H. Jung, S. Bae, T. W. Yoo, and W. H. Jo, Polym. Chem., 5, 6545 (2014).

    Article  CAS  Google Scholar 

  24. A. Patra and M. Bendikov, J. Mater. Chem., 20, 422 (2010).

    Article  CAS  Google Scholar 

  25. J. Warnan, C. Cabanetos, R. Bude, E. A. Labban, L. Li, and P. M. Beaujuge, Chem. Mater., 26, 2829 (2014).

    Article  CAS  Google Scholar 

  26. Z. Li, J. Lu, S.-C. Tse, J. Zhou, X. Du, Y. Taob, and J. Ding, J. Mater. Chem., 21, 3226 (2011).

    Article  CAS  Google Scholar 

  27. I. T. Kim, KR Patent 10-1777669 (2017).

  28. W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater., 15, 1617 (2005).

    Article  CAS  Google Scholar 

  29. M. Lenes and L. J. A. Koster, Appl. Phys. Lett., 88, 243502 (2006).

    Article  Google Scholar 

  30. F. He, W. Wang, W. Chen, T. Xu, S. B. Darling, J. Strzalka, Y. Liu, and L. Yu, J. Am. Chem. Soc, 133, 3284 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to In Tae Kim or Hyosung Choi.

Additional information

Supporting information

Information is available regarding the copolymerization procedure, NMR spectra, UV-Vis spectra and CV spectra, device fabrication details and PDI data. The materials are available via the Internet at http://www.springer.com/13233.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgments: The first two authors equally contributed to this work. This research was conducted in 2019 during the sabbatical research year of Kwangwoon University. This work was supported by Energy Demand Management Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from Ministry of Trade, Industry & Energy, Republic of Korea (No. 2018201010636A).

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, N.G., Shome, S., Yu, E.S. et al. Impact of Chalcogenophenes on Donor-Acceptor Copolymers for Bulk Heterojunction Solar Cells. Macromol. Res. 28, 1111–1115 (2020). https://doi.org/10.1007/s13233-020-8145-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-020-8145-6

Keywords

Navigation