Skip to main content

Advertisement

Log in

Research progress of nanomaterial-mediated photodynamic therapy in tumor treatment

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT) is a new approach to destroy tumor over past decades due to its high selectivity and minimal invasiveness. Photosensitizers (PSs), plenty of oxygen, and special wavelengths of light irradiation are three indispensable basic elements in the PDT therapeutic procedure. Upon exposed to light irradiation, PSs utilized surround oxygen to produce poisonous reactive oxygen species (ROS) to kill cancer cells through apoptosis or necrosis. PDT cased cancer cells damage highly dependent on tissue oxygen concentration and DNA self-repairing inhibition. Therefore, altering ROS homeostasis in cancer cells can be exploited for tumor therapeutic. Furthermore, PDT as the highly selective therapy approach can directly ablate solid tumor at primary sites. Meanwhile, it can induce immunogenic cell death by release damage-associate molecular patterns and tumor-associated antigens to activate immune response for inhibit cancer recurrence and metastasis. However, PDT was seriously hampered due to the poor drug penetration depth and unfavorable biodistribution of PSs at the lesion tissues. As the development of nanomaterial, nanotechology-based PDT have made a huge revolution in cancer therapeutic, which can effectively overcome these drawbacks and ameliorate the complex tumor microenvironment to enhance PDT effects. In general, the size of nanoparticles between 50 and 100 nm can prolong blood circulation time and efficiently tumor accumulation through enhanced permeability and retention (EPR) effects. Once inside the tumor tissues, they should be small enough to enhance penetration. Given this, we summarize the advances of PDT in tumor therapeutic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albadari N, Deng S, Li W (2019) The transcriptional factors HIF-1 and HIF-2 and their novel inhibitors in cancer therapy. Expert Opin Drug Discov 14(7):667–682

    CAS  Google Scholar 

  • Bao X, Yuan Y, Chen J, Zhang B, Li D, Zhou D, Jing P, Xu G, Wang Y, Holá K, Shen D, Wu C, Song L, Liu C, Zbořil R, Qu S (2018) In vivo theranostics with near-infrared-emitting carbon dots-highly efficient photothermal therapy based on passive targeting after intravenous administration. Light Sci Appl 7:91

    Google Scholar 

  • Barker HE, Paget JTE, Khan AA, Harrington KJ (2015) The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer 15(7):409–425

    CAS  Google Scholar 

  • Boonstra J, Post JA (2004) Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene 337:1–13

    CAS  Google Scholar 

  • Chen H, Kuo MT (2017) Improving radiotherapy in cancer treatment: promises and challenges. Oncotarget 8(37):62742–62758

    Google Scholar 

  • Chen H, Tian J, He W, Guo Z (2015a) H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells. J Am Chem Soc 137(4):1539–1547

    CAS  Google Scholar 

  • Chen Q, Liang C, Wang C, Liu Z (2015b) An imagable and photothermal “Abraxane-like” nanodrug for combination cancer therapy to treat subcutaneous and metastatic breast tumors. Adv Mater 27(5):903–910

    CAS  Google Scholar 

  • Chen Q, Feng L, Liu J, Zhu W, Dong Z, Wu Y, Liu Z (2016) Intelligent albumin-MnO2 nanoparticles as pH-/H2O2-responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy. Adv Mater 28(33):7129–7136

    CAS  Google Scholar 

  • Chen D, Zhang J, Tang Y, Huang X, Shao J, Si W, Ji J, Zhang Q, Huang W, Dong X (2018) A tumor-mitochondria dual targeted aza-BODIPY-based nanotheranostic agent for multimodal imaging-guided phototherapy. J Mater Chem B 6(27):4522–4530

    CAS  Google Scholar 

  • Chen Q et al (2019) Nanoparticle-enhanced radiotherapy to trigger robust cancer immunotherapy. Adv Mater 31(10):e1802228

    Google Scholar 

  • Evans SS, Repasky EA, Fisher DT (2015) Fever and the thermal regulation of immunity: the immune system feels the heat. Nat Rev Immunol 15(6):335–349

    CAS  Google Scholar 

  • Fan W, Bu W, Shen B, He Q, Cui Z, Liu Y, Zheng X, Zhao K, Shi J (2015) Intelligent MnO2 nanosheets anchored with upconversion nanoprobes for concurrent pH-/H2O2-responsive UCL imaging and oxygen-elevated synergetic therapy. Adv Mater 27(28):4155–4161

    CAS  Google Scholar 

  • Fang RH, Hu CMJ, Luk BT, Gao W, Copp JA, Tai Y, O’Connor DE, Zhang L (2014) Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett 14(4):2181–2188

    CAS  Google Scholar 

  • Farkona S, Diamandis EP, Blasutig IM (2016) Cancer immunotherapy: the beginning of the end of cancer? BMC Med 14:73

    Google Scholar 

  • Feng B, Niu Z, Hou B, Zhou L, Li Y, Yu H (2020) Enhancing triple negative breast cancer immunotherapy by ICG-templated self-assembly of paclitaxel nanoparticles. Adv Funct Mater 30(6):1906605

    CAS  Google Scholar 

  • Gao S, Wang G, Qin Z, Wang X, Zhao G, Ma Q, Zhu L (2017) Oxygen-generating hybrid nanoparticles to enhance fluorescent/photoacoustic/ultrasound imaging guided tumor photodynamic therapy. Biomaterials 112:324–335

    CAS  Google Scholar 

  • Garg AD, Nowis D, Golab J, Agostinis P (2010) Photodynamic therapy: illuminating the road from cell death towards anti-tumour immunity. Apoptosis 15(9):1050–1071

    CAS  Google Scholar 

  • Hahn AW, Gill DM, Pal SK, Agarwal N (2017) The future of immune checkpoint cancer therapy after PD-1 and CTLA-4. Immunotherapy 9(8):681–692

    CAS  Google Scholar 

  • Hao Y, Zhang B, Zheng C, Niu M, Guo H, Zhang H, Chang J, Zhang Z, Wang L, Zhang Y (2017) Multifunctional nanoplatform for enhanced photodynamic cancer therapy and magnetic resonance imaging. Colloids Surf B Biointerfaces 151:384–393

    CAS  Google Scholar 

  • Hartshorn CM, Bradbury MS, Lanza GM, Nel AE, Rao J, Wang AZ, Wiesner UB, Yang L, Grodzinski P (2018) Nanotechnology strategies to advance outcomes in clinical cancer care. ACS Nano 12(1):24–43

    CAS  Google Scholar 

  • He C, Duan X, Guo N, Chan C, Poon C, Weichselbaum RR, Lin W (2016) Core-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy. Nat Commun 7:12499

    CAS  Google Scholar 

  • Holmstrom KM, Finkel T (2014) Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 15(6):411–421

    CAS  Google Scholar 

  • Huang K, Ma H, Liu J, Huo S, Kumar A, Wei T, Zhang X, Jin S, Gan Y, Wang PC, He S, Zhang X, Liang XJ (2012) Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. ACS Nano 6(5):4483–4493

    CAS  Google Scholar 

  • Ishihara J et al (2017) Matrix-binding checkpoint immunotherapies enhance antitumor efficacy and reduce adverse events. Sci Transl Med 9(415):eaan0401

    Google Scholar 

  • Javeed A, Ashraf M, Riaz A, Ghafoor A, Afzal S, Mukhtar MM (2009) Paclitaxel and immune system. Eur J Pharm Sci 38(4):283–290

    CAS  Google Scholar 

  • Ji T, Lang J, Wang J, Cai R, Zhang Y, Qi F, Zhang L, Zhao X, Wu W, Hao J, Qin Z, Zhao Y, Nie G (2017) Designing liposomes to suppress extracellular matrix expression to enhance drug penetration and pancreatic tumor therapy. ACS Nano 11(9):8668–8678

    CAS  Google Scholar 

  • Jia Q, Ge J, Liu W, Zheng X, Chen S, Wen Y, Zhang H, Wang P (2018) A Magnetofluorescent carbon dot assembly as an acidic H2O2-driven oxygenerator to regulate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapy. Adv Mater 30(13):e1706090

    Google Scholar 

  • Kawanishi S, Hiraku Y, Pinlaor S, Ma N (2006) Oxidative and nitrative DNA damage in animals and patients with inflammatory diseases in relation to inflammation-related carcinogenesis. Biol Chem 387(4):365–372

    CAS  Google Scholar 

  • Khalil DN, Smith EL, Brentjens RJ, Wolchok JD (2016) The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol 13(5):273–290

    CAS  Google Scholar 

  • Ko YJ, Lee JW, Kim H, Cho EJ, Yang Y, Kim IS, Kim SH, Kwon IC (2020) Versatile activatable vSIRPalpha-probe for cancer-targeted imaging and macrophage-mediated phagocytosis of cancer cells. J Control Release 323:376–386

    CAS  Google Scholar 

  • Li J, Han Y, Chen Q, Shi H, ur Rehman S, Siddiq M, Ge Z, Liu S (2014) Dual endogenous stimuli-responsive polyplex micelles as smart two-step delivery nanocarriers for deep tumor tissue penetration and combating drug resistance of cisplatin. J Mater Chem B 2(13):1813–1824

    CAS  Google Scholar 

  • Li T, Li C, Ruan Z, Xu P, Yang X, Yuan P, Wang Q, Yan L (2019) Polypeptide-conjugated second near-infrared organic fluorophore for image-guided photothermal therapy. ACS Nano 13(3):3691–3702

    CAS  Google Scholar 

  • Liang C, Diao S, Wang C, Gong H, Liu T, Hong G, Shi X, Dai H, Liu Z (2014) Tumor metastasis inhibition by imaging-guided photothermal therapy with single-walled carbon nanotubes. Adv Mater 26(32):5646–5652

    CAS  Google Scholar 

  • Lin J, Wang M, Hu H, Yang X, Wen B, Wang Z, Jacobson O, Song J, Zhang G, Niu G, Huang P, Chen X (2016) Multimodal-imaging-guided cancer phototherapy by versatile biomimetic theranostics with UV and gamma-irradiation protection. Adv Mater 28(17):3273–3279

    CAS  Google Scholar 

  • Liu C, Zhang P, Zhai X, Tian F, Li W, Yang J, Liu Y, Wang H, Wang W, Liu W (2012) Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials 33(13):3604–3613

    CAS  Google Scholar 

  • Liu Y, Ai K, Liu J, Deng M, He Y, Lu L (2013) Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv Mater 25(9):1353–1359

    CAS  Google Scholar 

  • Liu WL, Liu T, Zou MZ, Yu WY, Li CX, He ZY, Zhang MK, Liu MD, Li ZH, Feng J, Zhang XZ (2018) Aggressive man-made red blood cells for hypoxia-resistant photodynamic therapy. Adv Mater 30(35):e1802006

    Google Scholar 

  • Lohse I, Lourenco C, Ibrahimov E, Pintilie M, Tsao MS, Hedley D (2014) Assessment of hypoxia in the stroma of patient-derived pancreatic tumor xenografts. Cancers (Basel) 6(1):459–471

    Google Scholar 

  • Lou Y, McDonald PC, Oloumi A, Chia S, Ostlund C, Ahmadi A, Kyle A, auf dem Keller U, Leung S, Huntsman D, Clarke B, Sutherland BW, Waterhouse D, Bally M, Roskelley C, Overall CM, Minchinton A, Pacchiano F, Carta F, Scozzafava A, Touisni N, Winum JY, Supuran CT, Dedhar S (2011) Targeting tumor hypoxia: suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors. Cancer Res 71(9):3364–3376

    CAS  Google Scholar 

  • Lu K, He C, Guo N, Chan C, Ni K, Weichselbaum RR, Lin W (2016) Chlorin-based nanoscale metal-organic framework systemically rejects colorectal cancers via synergistic photodynamic therapy and checkpoint blockade immunotherapy. J Am Chem Soc 138(38):12502–12510

    CAS  Google Scholar 

  • Marquez-Garban DC et al (2019) Antiestrogens in combination with immune checkpoint inhibitors in breast cancer immunotherapy. J Steroid Biochem Mol Biol 193:105415

    CAS  Google Scholar 

  • Meng L, Cheng Y, Tong X, Gan S, Ding Y, Zhang Y, Wang C, Xu L, Zhu Y, Wu J, Hu Y, Yuan A (2018) Tumor oxygenation and hypoxia inducible factor-1 functional inhibition via a reactive oxygen species responsive nanoplatform for enhancing radiation therapy and abscopal effects. ACS Nano 12(8):8308–8322

    CAS  Google Scholar 

  • Miao P, Han K, Tang Y, Wang B, Lin T, Cheng W (2015) Recent advances in carbon nanodots: synthesis, properties and biomedical applications. Nanoscale 7(5):1586–1595

    CAS  Google Scholar 

  • Mikhail AS, Allen C (2009) Block copolymer micelles for delivery of cancer therapy: transport at the whole body, tissue and cellular levels. J Control Release 138(3):214–223

    CAS  Google Scholar 

  • Min H, Wang J, Qi Y, Zhang Y, Han X, Xu Y, Xu J, Li Y, Chen L, Cheng K, Liu G, Yang N, Li Y, Nie G (2019) Biomimetic metal-organic framework nanoparticles for cooperative combination of antiangiogenesis and photodynamic therapy for enhanced efficacy. Adv Mater 31(15):e1808200

    Google Scholar 

  • O'Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209(2):171–176

    CAS  Google Scholar 

  • Prasad P, Gordijo CR, Abbasi AZ, Maeda A, Ip A, Rauth AM, DaCosta RS, Wu XY (2014) Multifunctional albumin-MnO2 nanoparticles modulate solid tumor microenvironment by attenuating hypoxia, acidosis, vascular endothelial growth factor and enhance radiation response. ACS Nano 8(4):3202–3212

    CAS  Google Scholar 

  • Rak J et al (2019) Drug delivery systems for phthalocyanines for photodynamic therapy. Anticancer Res 39(7):3323–3339

    CAS  Google Scholar 

  • Ranji-Burachaloo H, Reyhani A, Gurr PA, Dunstan DE, Qiao GG (2019) Combined Fenton and starvation therapies using hemoglobin and glucose oxidase. Nanoscale 11(12):5705–5716

    CAS  Google Scholar 

  • Riley RS, June CH, Langer R, Mitchell MJ (2019) Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov 18(3):175–196

    CAS  Google Scholar 

  • Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10(9):909–915

    CAS  Google Scholar 

  • Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30(11):1191–1212

    CAS  Google Scholar 

  • Semenza GL (2012) Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci 33(4):207–214

    CAS  Google Scholar 

  • Shao K, Singha S, Clemente-Casares X, Tsai S, Yang Y, Santamaria P (2015) Nanoparticle-based immunotherapy for cancer. ACS Nano 9(1):16–30

    CAS  Google Scholar 

  • Sharma P, Allison JP (2015) The future of immune checkpoint therapy. Science 348(6230):56–61

    CAS  Google Scholar 

  • Song W, Kuang J, Li CX, Zhang M, Zheng D, Zeng X, Liu C, Zhang XZ (2018) Enhanced immunotherapy based on photodynamic therapy for both primary and lung metastasis tumor eradication. ACS Nano 12(2):1978–1989

    CAS  Google Scholar 

  • Stephan SB, Taber AM, Jileaeva I, Pegues EP, Sentman CL, Stephan MT (2015) Biopolymer implants enhance the efficacy of adoptive T-cell therapy. Nat Biotechnol 33(1):97–101

    CAS  Google Scholar 

  • Sun Q, Sun X, Ma X, Zhou Z, Jin E, Zhang B, Shen Y, van Kirk EA, Murdoch WJ, Lott JR, Lodge TP, Radosz M, Zhao Y (2014) Integration of nanoassembly functions for an effective delivery cascade for cancer drugs. Adv Mater 26(45):7615–7621

    CAS  Google Scholar 

  • Sun C, Zhang Y, Sun K, Reckmeier C, Zhang T, Zhang XY, Zhao J, Wu C, Yu WW, Rogach AL (2015) Combination of carbon dot and polymer dot phosphors for white light-emitting diodes. Nanoscale 7(28):12045–12050

    CAS  Google Scholar 

  • Turley SJ, Cremasco V, Astarita JL (2015) Immunological hallmarks of stromal cells in the tumour microenvironment. Nat Rev Immunol 15(11):669–682

    CAS  Google Scholar 

  • Wang LV, Hu S (2012) Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335(6075):1458–1462

    CAS  Google Scholar 

  • Wang S, Shang L, Li L, Yu Y, Chi C, Wang K, Zhang J, Shi R, Shen H, Waterhouse GIN, Liu S, Tian J, Zhang T, Liu H (2016) Metal-organic-framework-derived mesoporous carbon nanospheres containing porphyrin-like metal centers for conformal phototherapy. Adv Mater 28(38):8379–8387

    CAS  Google Scholar 

  • Wang Y, Wei G, Zhang X, Xu F, Xiong X, Zhou S (2017) A step-by-step multiple stimuli-responsive nanoplatform for enhancing combined chemo-photodynamic therapy. Adv Mater 29(12):1605357

    Google Scholar 

  • Wang H, Pan X, Wang X, Wang W, Huang Z, Gu K, Liu S, Zhang F, Shen H, Yuan Q, Ma J, Yuan W, Liu H (2020) Degradable carbon-silica nanocomposite with immunoadjuvant property for dual-modality photothermal/photodynamic therapy. ACS Nano 14(3):2847–2859

    CAS  Google Scholar 

  • Wu W, Yang Q, Wu W, Yang Q, Li T, Zhang P, Zhou R, Yang C (2009) Hemoglobin-based oxygen carriers combined with anticancer drugs may enhance sensitivity of radiotherapy and chemotherapy to solid tumors. Artif Cells Blood Substit Immobil Biotechnol 37(4):163–165

    CAS  Google Scholar 

  • Xu Z, Wang Y, Zhang L, Huang L (2014) Nanoparticle-delivered transforming growth factor-beta siRNA enhances vaccination against advanced melanoma by modifying tumor microenvironment. ACS Nano 8(4):3636–3645

    CAS  Google Scholar 

  • Xu T, Ma Y, Yuan Q, Hu H, Hu X, Qian Z, Rolle JK, Gu Y, Li S (2020) Enhanced ferroptosis by oxygen-boosted phototherapy based on a 2-in-1 nanoplatform of ferrous hemoglobin for tumor synergistic therapy. ACS Nano 14(3):3414–3425

    CAS  Google Scholar 

  • Yang G, Xu L, Chao Y, Xu J, Sun X, Wu Y, Peng R, Liu Z (2017) Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat Commun 8(1):902

    Google Scholar 

  • Yu X, Gao D, Gao L, Lai J, Zhang C, Zhao Y, Zhong L, Jia B, Wang F, Chen X, Liu Z (2017) Inhibiting metastasis and preventing tumor relapse by triggering host immunity with tumor-targeted photodynamic therapy using photosensitizer-loaded functional nanographenes. ACS Nano 11(10):10147–10158

    CAS  Google Scholar 

  • Yuan Q, Wu Y, Wang J, Lu D, Zhao Z, Liu T, Zhang X, Tan W (2013) Targeted bioimaging and photodynamic therapy nanoplatform using an aptamer-guided G-quadruplex DNA carrier and near-infrared light. Angew Chem Int Ed Engl 52(52):13965–13969

    CAS  Google Scholar 

  • Zhang L, Dermawan K, Jin M, Liu R, Zheng H, Xu L, Zhang Y, Cai Y, Chu Y, Xiong S (2008) Differential impairment of regulatory T cells rather than effector T cells by paclitaxel-based chemotherapy. Clin Immunol 129(2):219–229

    CAS  Google Scholar 

  • Zhang Z, Yao Z, Wang L, Ding H, Shao J, Chen A, Zhang F, Zheng S (2018) Activation of ferritinophagy is required for the RNA-binding protein ELAVL1/HuR to regulate ferroptosis in hepatic stellate cells. Autophagy 14(12):2083–2103

    CAS  Google Scholar 

  • Zheng XT, Ananthanarayanan A, Luo KQ, Chen P (2015) Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11(14):1620–1636

    CAS  Google Scholar 

  • Zhong H, Han B, Tourkova IL, Lokshin A, Rosenbloom A, Shurin MR, Shurin GV (2007) Low-dose paclitaxel prior to intratumoral dendritic cell vaccine modulates intratumoral cytokine network and lung cancer growth. Clin Cancer Res 13(18 Pt 1):5455–5462

    CAS  Google Scholar 

  • Zhou F, Feng B, Yu H, Wang D, Wang T, Ma Y, Wang S, Li Y (2019) Tumor microenvironment-activatable prodrug vesicles for nanoenabled cancer chemoimmunotherapy combining immunogenic cell death induction and CD47 blockade. Adv Mater 31(14):e1805888

    Google Scholar 

Download references

Funding

This work was supported by Natural Science Foundation of Jiangsu Province.

(BK20161317).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuanxiang Zhao or Zhengzou Fang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Qin, C., Zhao, C. et al. Research progress of nanomaterial-mediated photodynamic therapy in tumor treatment. J Nanopart Res 22, 298 (2020). https://doi.org/10.1007/s11051-020-05030-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-020-05030-2

Keywords

Navigation