Skip to main content
Log in

A matched propensity score study of embryo morphokinetics following gonadotropin-releasing hormone agonist versus human chorionic gonadotropin trigger

  • Assisted Reproduction Technologies
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To compare morphokinetic parameters and quality of embryos derived from GnRH antagonist ICSI cycles triggered either with GnRH agonist or standard hCG between matched groups of patients.

Methods

Morphokinetic parameters of embryos derived from matched first GnRH antagonist ICSI cycles triggered by GnRH agonist or standard hCG between 2013 and 2016 were compared. Matching was performed for maternal age, peak estradiol levels, and number of oocytes retrieved. Outcome measures were: time to pronucleus fading (tPNf), cleavage timings (t2-t8), synchrony of the second and third cycles (S2 and S3), duration of the second and third cycle (CC2 and CC3), optimal cell cycle division parameters, and known implantation data (KID) scoring for embryo quality. Multivariate linear and logistic regression analyses were performed for confounding factors.

Results

We analyzed 824 embryos from 84 GnRH agonist trigger cycles and 746 embryos from 84 matched hCG trigger cycles. Embryos derived from the cycles triggered with hCG triggering cleaved faster than those deriving from GnRH agonist trigger. The differences were significant throughout most stages of embryo development (t3-t6), and a shorter second cell cycle duration of the hCG trigger embryos was observed. There was no difference in synchrony of the second and third cell cycles and the optimal cell cycle division parameters between the two groups, but there was a higher percentage of embryos without multinucleation in the hCG trigger group (27.8% vs. 21.6%, p < 0.001).

Conclusion

The type of trigger in matched antagonist ICSI cycles was found to affect early embryo cleavage times but not embryo quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Conaghan J, Chen AA, Willman SP, Ivani K, Chenette PE, Boostanfar R, et al. Improving embryo selection using a computer-automated time-lapse image analysis test plus day 3 morphology: results from a prospective multicenter trial. Fertil Steril. 2013;100:412–419.e5. https://doi.org/10.1016/j.fertnstert.2013.04.021.

    Article  Google Scholar 

  2. Kirkegaard K, Agerholm IE, Ingerslev HJ. Time-lapse monitoring as a tool for clinical embryo assessment. Hum Reprod. 2012;27:1277–85. https://doi.org/10.1093/humrep/des079.

    Article  Google Scholar 

  3. Rubio I, Galán A, Larreategui Z, Ayerdi F, Bellver J, Herrero J, et al. Clinical validation of embryo culture and selection by morphokinetic analysis: a randomized, controlled trial of the EmbryoScope. Fertil Steril. 2014;102:1287–1294.e5. https://doi.org/10.1016/j.fertnstert.2014.07.738.

    Article  Google Scholar 

  4. Baart EB, Macklon NS, Fauser BJ. Ovarian stimulation and embryo quality. Reprod BioMed Online. 2009;18:S45–50. https://doi.org/10.1016/S1472-6483(10)60448-8.

    Article  Google Scholar 

  5. Baart EB, Martini E, Eijkemans MJ, Van Opstal D, Beckers NGM, Verhoeff A, et al. Milder ovarian stimulation for in-vitro fertilization reduces aneuploidy in the human preimplantation embryo: a randomized controlled trial. Hum Reprod. 2007;22:980–8. https://doi.org/10.1093/humrep/del484.

    Article  Google Scholar 

  6. Balaban B, Urman B. Effect of oocyte morphology on embryo development and implantation. Reprod BioMed Online. 2006;12:608–15. https://doi.org/10.1016/S1472-6483(10)61187-X.

    Article  Google Scholar 

  7. Wang R, Lin S, Wang Y, Qian W, Zhou L. Comparisons of GnRH antagonist protocol versus GnRH agonist long protocol in patients with normal ovarian reserve: a systematic review and meta-analysis. PLoS One. 2017;12:e0175985. https://doi.org/10.1371/journal.pone.0175985.

    Article  CAS  Google Scholar 

  8. Griesinger G, Kolibianakis EM, Papanikolaou EG, Diedrich K, Van Steirteghem A, Devroey P, et al. Triggering of final oocyte maturation with gonadotropin-releasing hormone agonist or human chorionic gonadotropin. Live birth after frozen-thawed embryo replacement cycles. Fertil Steril. 2007;88:616–21. https://doi.org/10.1016/j.fertnstert.2006.12.006.

    Article  CAS  Google Scholar 

  9. Hernández ER, Gómez-Palomares JL, Ricciarelli E. No room for cancellation, coasting, or ovarian hyperstimulation syndrome in oocyte donation cycles. Fertil Steril. 2009;91:1358–61. https://doi.org/10.1016/j.fertnstert.2008.03.077.

    Article  CAS  Google Scholar 

  10. Itskovitz-Eldor J, Kol S, Mannaerts B. Use of a single bolus of GnRH agonist triptorelin to trigger ovulation after GnRH antagonist ganirelix treatment in women undergoing ovarian stimulation for assisted reproduction, with special reference to the prevention of ovarian hyperstimulation syndro. Hum Reprod. 2000;177:7–11. https://doi.org/10.1083/jcb.200611141.

    Article  CAS  Google Scholar 

  11. Orvieto R. Can we eliminate severe ovarian hyperstimulation syndrome? Hum Reprod. 2005;20:320–2. https://doi.org/10.1093/humrep/deh613.

    Article  Google Scholar 

  12. Humaidan P, Kol S, Papanikolaou EG. GnRH agonist for triggering of final oocyte maturation: Time for a change of practice? Hum Reprod Update. 2011;17:510–24. https://doi.org/10.1093/humupd/dmr008.

    Article  CAS  Google Scholar 

  13. Itskovitz J, Boldes R, Levron J, Erlik Y, Kahana L, Brandes JM. Induction of preovulatory luteinizing hormone surge and prevention of ovarian hyperstimulation syndrome by gonadotropin-releasing hormone agonist. Fertil Steril. 1991;56:213–20.

    Article  CAS  Google Scholar 

  14. Suda T, Balakier H, Powell W, Casper RF. Use of Gonadotropin-Releasing Hormone Agonist to Trigger Follicular Maturation for in Vitro Fertilization. J Clin Endocrinol Metab. 1990;71:918–22. https://doi.org/10.1210/jcem-71-4-918.

    Article  Google Scholar 

  15. Humaiden P, Papanikolaou EG, Kyrou D, Alsbjerg B, Polyzos NP, Devroey P, et al. The luteal phase after GnRH-agonist triggering of ovulation: present and future perspectives. Reprod BioMed Online. 2012;24:134–41.

    Article  Google Scholar 

  16. Kol S, Humaiden P. LH (as HCG) and FSH surges for final oocyte maturation: sometimes it takes two to tango? Reprod BioMed Online. 2010;21:590–2. https://doi.org/10.1016/j.rbmo.2010.06.031.

    Article  Google Scholar 

  17. Muñoz M, Cruz M, Humaidan P, Garrido N, Pérez-Cano I, Meseguer M. The type of GnRH analogue used during controlled ovarian stimulation influences early embryo developmental kinetics: a time-lapse study. Eur J Obstet Gynecol Reprod Biol. 2013;168:167–72. https://doi.org/10.1016/j.ejogrb.2012.12.038.

    Article  CAS  Google Scholar 

  18. Alikani M, Calderon G, Tomkin G, Garrisi J, Kokot M, Cohen J. Cleavage anomalies in early human embryos and survival after prolonged culture in-vitro. Hum Reprod. 2000;15:2634–43.

    Article  CAS  Google Scholar 

  19. Petersen BM, Boel M, Montag M, Gardner DK. Development of a generally applicable morphokinetic algorithm capable of predicting the implantation potential of embryos transferred on Day 3. Hum Reprod. 2016;31:2231–44.

    Article  Google Scholar 

  20. Pellicer A, Ruiz A, Castellvi RM, Calatayud C, Ruiz M, Tarin JJ, et al. Is the retrieval of high numbers of oocytes desirable in patients treated with gonadotrophin-releasing hormone analogues (GnRHa) and gonadotrophins? Hum Reprod. 1989;4:536–40. https://doi.org/10.1093/oxfordjournals.humrep.a136940.

    Article  CAS  Google Scholar 

  21. van der Gaast MH, Eijkemans MJC, van der Net JB, de Boer EJ, Burger CW, van Leeuwen FE, et al. Optimum number of oocytes for a successful first IVF treatment cycle. Reprod BioMed Online. 2006;13:476–80. https://doi.org/10.1016/S1472-6483(10)60633-5.

    Article  Google Scholar 

  22. Rubio C, Mercader A, Alamá P, Lizán C, Rodrigo L, Labarta E, et al. Prospective cohort study in high responder oocyte donors using two hormonal stimulation protocols: impact on embryo aneuploidy and development. Hum Reprod. 2010;25:2290–7. https://doi.org/10.1093/humrep/deq174.

    Article  CAS  Google Scholar 

  23. Gurbuz AS, Gode F, Uzman MS, Ince B, Kaya M, Ozcimen N, et al. GnRH agonist triggering affects the kinetics of embryo development: a comparative study. J Ovarian Res. 2016;9:22. https://doi.org/10.1186/s13048-016-0229-8.

    Article  CAS  Google Scholar 

  24. Alyasin A, Mehdinejadiani S. GnRH Agonist trigger versus HCG trigger in GnRH antagonist in IVF/ICSI cycles: a review article. Int J Reprod Biomed. 2016;14:557–66.

    CAS  Google Scholar 

  25. Shapiro BS, Andersen CY. Major drawbacks and additional benefits of agonist trigger-not ovarian hyperstimulation syndrome related. Fertil Steril. 2015;103:874–8.

    Article  CAS  Google Scholar 

  26. Humaidan P, Engmann L, Benadiva C. Luteal phase supplementation after gonadotropin-releasing hormone agonist trigger in fresh embryo transfer: the American versus European approaches. Fertil Steril. 2015;103:879–85.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galia Oron.

Ethics declarations

Conflict of interest

The authors report no conflict of interest

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oron, G., Sapir, O., Wertheimer, A. et al. A matched propensity score study of embryo morphokinetics following gonadotropin-releasing hormone agonist versus human chorionic gonadotropin trigger. J Assist Reprod Genet 37, 2777–2782 (2020). https://doi.org/10.1007/s10815-020-01953-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-020-01953-w

Keywords

Navigation