Skip to main content
Log in

Swimming of Gyrotactic Microorganisms in Unsteady Flow of Eyring Powell Nanofluid with Variable Thermal Features: Some Bio-technology Applications

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

A Correction to this article was published on 28 September 2023

This article has been updated

Abstract

This investigation presents novel applications for bioconvection flow of non-Newtonian fluid with diverse flow features. The developed unsteady bio-nano-transport model is formulated under the influence of some novel features such as variable thermal conductivity, heat absorption/generation and activation energy. In contrast to typical investigations, the flow has been originated by accelerated porous plate which conferred the suction and injection phenomenon. The thermal aspects of magnetized nanoparticles are evaluated by employing prestigious Buongiorno’s model. The flow model is constituted via partial differential equations for which dimensionless form is availed before develop the analytical expressions. The convergent technique namely homotopy analysis procedure is followed to suggest the solution. The validation of solution has been done by comparing it with already reported investigations and finds an excellent accuracy. The rheological characteristics of Eyring Powell fluid and thermal features of nanoparticles against involved control parameters are explained through various graphs. The reported results may contribute effective role in enhancement of thermal processes, cooling phenomenon, bio-fuels etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles. ASME Publ. Fed. 231, 99–106 (1995)

    Google Scholar 

  2. J. Boungiorno, Convective transport in nanofluids. J. Heat Transfer 128, 240–250 (2010)

    Article  Google Scholar 

  3. A. Wakif, L.I. Animasaun, P.V. Satya Narayana, G. Sarojamma, Meta-analysis on thermo-migration of tiny/nano-sized particles in the motion of various fluids. Chin. J. Phys. (2019). https://doi.org/10.1016/j.cjph.2019.12.002

    Article  Google Scholar 

  4. T. Hayat, K. Muhammad, M. Farooq, A. Alsaedi, Melting heat transfer in stagnation point flow of carbon nanotubes towards variable thickness surface. AIP Adv. 6, 015214 (2016)

    Article  ADS  Google Scholar 

  5. S.U. Khan, S. Al, Shehzad, Brownian movement and thermophoretic aspects in third grade nanofluid over oscillatory moving sheet. Phys. Scr. 94, 095202 (2019)

    Article  ADS  Google Scholar 

  6. T. Hayat, M.Z. Kiyani, I. Ahmad, B. Ahmad, On analysis of magneto Maxwell nano-material by surface with variable thickness. Int. J. Mech. Sci. 131, 1016–1025 (2017)

    Article  Google Scholar 

  7. N. Sandeep, I.L. Animasaun, Heat transfer in wall jet flow of magnetic-nanofluids with variable magnetic field. Alex. Eng. J. 56, 263–269 (2017)

    Article  Google Scholar 

  8. H. Waqas, S.A. Shehzad, S.U. Khan, M. Imran, Novel numerical computations on flow of nanoparticles in porous rotating disk with multiple slip effects and microorganisms. J. Nanofluids 8, 1423–1432 (2019)

    Article  Google Scholar 

  9. H. Sardar, M. Khan, M. Alghamdi, Multiple solutions for the modified Fourier and Fick’s theories for Carreau nanofluid. Indian J. Phys. (2019). https://doi.org/10.1007/s12648-019-01628-y

    Article  Google Scholar 

  10. S. Manjunatha, B. Ammani Kuttan, S. Jayanthi, A. Chamkha, B.J. Gireesha, Heat transfer enhancement in the boundary layer flow of hybrid nanofluids due to variable viscosity and natural convection. Heliyon 5, e01469 (2019)

    Article  Google Scholar 

  11. A.A. Siddiqui, M. Turkyilmazoglu, A new theoretical approach of wall transpiration in the cavity flow of the ferrofluids. Micromachines 10, 373 (2019)

    Article  Google Scholar 

  12. S.U. Khan, H. Waqas, M.M. Bhatti, M. Imran, Bioconvection in the rheology of magnetized Couple stress nanofluid featuring activation energy and Wu’s slip. J. Non-Equilib. Thermodyn. 45, 81–95 (2020)

    Article  ADS  Google Scholar 

  13. A. Maleki, M. Elahi, M.E.H. Assad, M.A. Nazari, M.S. Shadloo, N. Nabipour, Thermal conductivity modeling of nanofluids with ZnO particles by using approaches based on artificial neural network and MARS. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09373-9

    Article  Google Scholar 

  14. M.I. Afridi, M. Qasim, A. Wakif, A. Hussanan, Second Law analysis of dissipative nanofluid flow over a curved surface in the presence of lorentz force: utilization of the Chebyshev–Gauss–Lobatto spectral method. Nanomaterials 9, 195 (2019)

    Article  Google Scholar 

  15. S.A. Moshizi, I. Pop, Conjugated effect of joule heating and magnetohydrodynamic on laminar convective heat transfer of nanofluids inside a concentric annulus in the presence of slip condition. Int. J. Thermophys. 37, 72 (2016)

    Article  ADS  Google Scholar 

  16. M.A. Taghikhani, Cu–water nanofluid MHD mixed convection in a lid-driven cavity with two sinusoidal heat sources considering joule heating effect. Int. J. Thermophys. 40, 44 (2019)

    Article  ADS  Google Scholar 

  17. Q. Hussain, N. Alvi, T. Latif, S. Asghar, Radiative heat transfer in Powell-Eyring nanofluid with peristalsis. Int. J. Thermophys. 40, 46 (2019)

    Article  ADS  Google Scholar 

  18. J. Ahmed, M. Khan, L. Ahmad, Joule Heating Effects in thermally radiative swirling flow of maxwell fluid over a porous rotating disk, Int. J. Thermophys., 40, Article number: 106 (2019)

  19. K. Martin, A. Sözen, E. Çiftçi, H. Muhammad Ali, An experimental investigation on aqueous Fe–CuO hybrid nanofluid usage in a plain heat pipe, Int. J. Thermophys. 41, Article number: 135 (2020)

  20. F.E. Berger Bioucas, M.H. Rausch, J. Schmidt, A. Bück, T.M. Koller, A.P. Fröba, Effective thermal conductivity of nanofluids: measurement and prediction, Int. J. Thermophys., 41, Article number: 55 (2020)

  21. R. Tariq, Y. Hussain, N. A. Sheikh, K. Afaq, H. Ali, Regression-based empirical modeling of thermal conductivity of CuO–water nanofluid using data-driven techniques, Int. J. Thermophys. 41, Article number: 43 (2020)

  22. G. López-Gamboa, J.L. Jiménez-Pérez, Z.N. Correa-Pacheco, M.L. Alvarado-Noguez, M. Amorim Lima, A. Cruz-Orea, J.G. Mendoza Alvarez, Artificial neural network for modeling thermal conductivity of biodiesels with different metallic nanoparticles for heat transfer applications, Int. J. Thermophys., 41, 10 (2020)

  23. A.A. Minea, B. Buonomo, J. Burggraf, D. Ercole, K.R. Karpaiya, A.D. Pasqua, G. Sekrani, J. Steffens, J. Tibaut, N. Wichmann, P. Farber, A. Huminic, G. Huminic, R. Mahu, O. Manca, C. Oprea, S. Poncet, J. Ravnik, NanoRound: a benchmark study on the numerical approach in nanofluids’ simulation. Int. Commun. Heat Mass 108, 104292 (2019)

    Article  Google Scholar 

  24. A.A. Minea, A review on electrical conductivity of nanoparticle-enhanced fluids. Nanomaterials 9, 1592 (2019)

    Article  Google Scholar 

  25. A.V. Kuznetsov, The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms. Int. Commun. Heat Mass 37, 1421–1425 (2010)

    Article  Google Scholar 

  26. A.V. Kuznetsov, Nanofluid bioconvection in water-based suspensions containing nanoparticles and oxytactic microorganisms: oscillatory instability. Nanoscale Res. Lett. 6, 100 (2011)

    Article  ADS  Google Scholar 

  27. M.J. Uddin, Y. Alginahi, O.A. Bég, M.N. Kabir, Numerical solutions for gyrotactic bioconvection in nanofluid-saturated porous media with Stefan blowing and multiple slip effects. Comput. Math. Appl. 72, 2562–2581 (2016)

    MathSciNet  MATH  Google Scholar 

  28. S. Saini, Y.D. Sharma, Numerical study of nanofluid thermo-bioconvection containing gravitactic microorganisms in porous media: effect of vertical through flow. Adv. Powder Technol. 29, 2725–2732 (2018)

    Article  Google Scholar 

  29. M. Zhao, Y. Xiao, S. Wang, Linear stability of thermal-bioconvection in a suspension of gyrotactic micro-organisms. Int. J. Heat Mass Tran 126, 95–102 (2018)

    Google Scholar 

  30. S.U. Khan, A. Rauf, S.A. Shehzad, Z. Abbas, T. Javed, Study of bioconvection flow in Oldroyd-B nanofluid with motile organisms and effective Prandtl approach. Phys. A 527, 121179 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. D. Lu, M. Ramzan, N. Ullah, J.D. Chung, U. Farooq, A numerical treatment of radiative nanofluid 3D flow containing gyrotactic microorganism with anisotropic slip, binary chemical reaction and activation energy. Sci. Rep. 7, 17008 (2017)

    Article  ADS  Google Scholar 

  32. A.M. Alwatban, S.U. Khan, H. Waqas, Iskander Tlili. Interaction of Wu’s slip features in bioconvection of Eyring Powell nanoparticles with activation energy, Processes 7, 859 (2019)

    Google Scholar 

  33. M. Sulaiman, A. Ali and S. Islam, Heat and mass transfer in three-dimensional flow of an Oldroyd-B nanofluid with gyrotactic micro-organisms, Math. Probl. Eng., 15, Article ID 6790420, (2018)

  34. R.E. Powell, H. Eyring, Nature, London p. 427 (1944)

  35. I. Khan, S. Fatima, M.Y. Malik, T. Salahuddin, Exponentially varying viscosity of magnetohydrodynamic mixed convection Eyring-Powell nanofluid flow over an inclined surface. Results Phys. 8, 1194–1203 (2018)

    Article  ADS  Google Scholar 

  36. O.A. Abegunrin, I.L. Animasaun, N. Sandeep, Insight into the boundary layer flow of non-Newtonian Eyring-Powell fluid due to catalytic surface reaction on an upper horizontal surface of a paraboloid of revolution. Alex. Eng. J. 57, 2051–2060 (2018)

    Article  Google Scholar 

  37. S.O. Salawu, H.A. Ogunseye, Entropy generation of a radiative hydromagnetic Powell-Eyring chemical reaction nanofluid with variable conductivity and electric field loading. Results Eng. 5, 100072 (2020)

    Article  Google Scholar 

  38. D. Kumar, K. Ramesh, S. Chandok, Mathematical modeling and simulation for the flow of magneto-Powell-Eyring fluid in an annulus with concentric rotating cylinders. Chin. J. Phys. 65, 187–197 (2020)

    Article  MathSciNet  Google Scholar 

  39. S. Hadi Seyedi, B.N. Saray, A.J. Chamkha, Heat and mass transfer investigation of MHD Eyring-Powell flow in a stretching channel with chemical reactions. Physica A 544, 124109 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  40. S.U. Khan, N. Ali, T. Hayat, Analytical and numerical study of diffusion of chemically reactive species in Eyring-Powell fluid over an oscillatory stretching surface. Bulg. Chem. Commun. 49, 320–330 (2017)

    Google Scholar 

  41. S.J. Liao, Advances in the homotopy analysis method, World Scientific Publishing, 5 Toh Tuck Link, Singapore 2014

  42. M. Turkyilmazoglu, Analytic approximate solutions of rotating disk boundary layer flow subject to a uniform suction or injection. Int. J. Mech. Sci. 52, 1735–1744 (2010)

    Article  Google Scholar 

  43. M. Turkyilmazoglu, The analytical solution of mixed convection heat transfer and fluid flow of a MHD viscoelastic fluid over a permeable stretching surface. Int. J. Mech. Sci. 77, 263–268 (2013)

    Article  Google Scholar 

  44. N. Khan, M.S. Hashmi, S.U. Khan, W.A. Syed, Study of polymeric liquid between stretching disks with chemical reaction. J. Braz. Soc. Mech. Sci. 40, 102 (2018)

    Article  Google Scholar 

  45. M. Waqas, S. Jabeen, T. Hayat, S.A. Shehzad, A. Alsaedi, Numerical simulation for nonlinear radiated Eyring-Powell nanofluid considering magnetic dipole and activation energy. Int. Commun. Heat Mass 112, 104401 (2020)

    Article  Google Scholar 

  46. K. Al-Khaled, S.U. Khan, I. Khan, Chemically reactive bioconvection flow of tangent hyperbolic nanoliquid with gyrotactic microorganisms and nonlinear thermal radiation. Heliyon 6, e03117 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafiz Muhammad Ali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S.U., Ali, H.M. Swimming of Gyrotactic Microorganisms in Unsteady Flow of Eyring Powell Nanofluid with Variable Thermal Features: Some Bio-technology Applications. Int J Thermophys 41, 159 (2020). https://doi.org/10.1007/s10765-020-02736-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02736-2

Keywords

Navigation