Skip to main content

Advertisement

Log in

Biochanin A impedes STAT3 activation by upregulating p38δ MAPK phosphorylation in IL-6-stimulated macrophages

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

IL-6-induced STAT3 activation is associated with various chronic inflammatory diseases. In this study, we investigated the anti-STAT3 mechanism of the dietary polyphenol, biochanin A (BCA), in IL-6-treated macrophages.

Methods

The effect of BCA on STAT3 and p38 MAPK was analyzed by immunoblot. The localization of both these transcription factors was determined by immunofluorescence and fractionation studies. The impact on DNA-binding activity of STAT3 was studied by luciferase assay. To understand which of the isoforms of p38 MAPK was responsible for BCA-mediated regulation of STAT3, overexpression of the proteins, site-directed mutagenesis, pull-down assays and computational analysis were performed. Finally, adhesion-migration assays and semi-quantitative PCR were employed to understand the biological effects of BCA-mediated regulation of STAT3.

Results

BCA prevented STAT3 phosphorylation (Tyr705) and increased p38 MAPK phosphorylation (Thr180/Tyr182) in IL-6-stimulated differentiated macrophages. This opposing modulatory effect of BCA was not observed in cells treated with other stress-inducing stimuli that activate p38 MAPK. BCA abrogated IL-6-induced nuclear translocation of phospho-STAT3 and its transcriptional activity, while increasing the cellular abundance of phospho-p38 MAPK. BCA-induced phosphorylation of p38δ, but not α, β, or γ was responsible for impeding IL-6-induced STAT3 phosphorylation. Interestingly, interaction with phospho-p38δ masked the Tyr705 residue of STAT3, preventing its phosphorylation. BCA significantly reduced STAT3-dependent expression of icam-1 and mcp-1 diminishing IL-6-mediated monocyte adhesion and migration.

Conclusion

This differential regulation of STAT3 and p38 MAPK in macrophages establishes a novel anti-inflammatory mechanism of BCA which could be important for the prevention of IL-6-associated chronic inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6(10):a016295.

    PubMed  PubMed Central  Google Scholar 

  2. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J. 2003;374:1–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Johnson DE, O'Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 2018;15(4):234–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Teng Y, Ross JL, Cowell JK. The involvement of JAK-STAT3 in cell motility, invasion, and metastasis. Jak-Stat. 2014;3(1):e28086.

    PubMed  PubMed Central  Google Scholar 

  5. Naugler WE, Karin M. The wolf in sheep's clothing: the role of interleukin-6 in immunity, inflammation and cancer. Trends Mol Med. 2008;14(3):109–19.

    CAS  PubMed  Google Scholar 

  6. Costa-Pereira AP. Regulation of IL-6-type cytokine responses by MAPKs. Biochem Soc Trans. 2014;42(1):59–62.

    CAS  PubMed  Google Scholar 

  7. Meng A, Zhang X, Shi Y. Role of p38 MAPK and STAT3 in lipopolysaccharide-stimulated mouse alveolar macrophages. Exper Ther Med. 2014;8(6):1772–6.

    CAS  Google Scholar 

  8. Ahmed ST, Ivashkiv LB. Inhibition of IL-6 and IL-10 signaling and Stat activation by inflammatory and stress pathways. J Immunol. 2000;165(9):5227–37.

    CAS  PubMed  Google Scholar 

  9. Terstegen L, Gatsios P, Bode JG, Schaper F, Heinrich PC, Graeve L. The inhibition of interleukin-6-dependent STAT activation by mitogen-activated protein kinases depends on tyrosine 759 in the cytoplasmic tail of glycoprotein 130. J Biol Chem. 2000;275(25):18810–7.

    CAS  PubMed  Google Scholar 

  10. Scheller J, Chalaris A, Schmidt-Arras D. Rose-John S (2011) The pro-and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta (BBA) Mol Cell Res. 1813;5:878–88.

    Google Scholar 

  11. Matsumoto S, Hara T, Mitsuyama K, Yamamoto M, Tsuruta O, Sata M, et al. Essential roles of IL-6 trans-signaling in colonic epithelial cells, induced by the IL-6/soluble–IL-6 receptor derived from lamina propria macrophages, on the development of colitis-associated premalignant cancer in a murine model. J Immunol. 2010;184(3):1543–51.

    CAS  PubMed  Google Scholar 

  12. Egwuagu CE. STAT3 in CD4+ T helper cell differentiation and inflammatory diseases. Cytokine. 2009;47(3):149–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. He G, Karin M. NF-kappaB and STAT3 - key players in liver inflammation and cancer. Cell Res. 2011;21(1):159–68.

    CAS  PubMed  Google Scholar 

  14. Busbee PB, Rouse M, Nagarkatti M, Nagarkatti PS. Use of natural AhR ligands as potential therapeutic modalities against inflammatory disorders. Nutr Rev. 2013;71(6):353–69.

    PubMed  PubMed Central  Google Scholar 

  15. Mukhtar H, Ahmad N. Tea polyphenols: prevention of cancer and optimizing health. Am J Clin Nutr. 1698S;71(6):1698S–S17021702.

    CAS  PubMed  Google Scholar 

  16. Pan T, Jankovic J, Le W. Potential therapeutic properties of green tea polyphenols in Parkinson’s disease. Drugs Aging. 2003;20(10):711–21.

    CAS  PubMed  Google Scholar 

  17. Strimpakos AS, Sharma RA. Curcumin: preventive and therapeutic properties in laboratory studies and clinical trials. Antioxid Redox Signal. 2008;10(3):511–46.

    CAS  PubMed  Google Scholar 

  18. Yang CS, Chung JY, Yang G-Y, Chhabra SK, Lee M-J. Tea and tea polyphenols in cancer prevention. J Nutr. 2000;130(2):472S–8S.

    CAS  PubMed  Google Scholar 

  19. Wu W-Y, Wu Y-Y, Huang H, He C, Li WZ, Wang H-L, et al. Biochanin A attenuates LPS-induced pro-inflammatory responses and inhibits the activation of the MAPK pathway in BV2 microglial cells. Int J Mol Med. 2015;35(2):391–8.

    CAS  PubMed  Google Scholar 

  20. Kole L, Giri B, Manna SK, Pal B, Ghosh S. Biochanin-A, an isoflavone, showed anti-proliferative and anti-inflammatory activities through the inhibition of iNOS expression, p38-MAPK and ATF-2 phosphorylation and blocking NFκB nuclear translocation. Eur J Pharmacol. 2011;653(1–3):8–15.

    CAS  PubMed  Google Scholar 

  21. Ming X, Ding M, Zhai B, Xiao L, Piao T, Liu M. Biochanin A inhibits lipopolysaccharide-induced inflammation in human umbilical vein endothelial cells. Life Sci. 2015;136:36–41.

    CAS  PubMed  Google Scholar 

  22. Sithisarn P, Michaelis M, Schubert-Zsilavecz M, Cinatl J Jr. Differential antiviral and anti-inflammatory mechanisms of the flavonoids biochanin A and baicalein in H5N1 influenza A virus-infected cells. Antivir Res. 2013;97(1):41–8.

    CAS  PubMed  Google Scholar 

  23. Kalayciyan A, Orawa H, Fimmel S, Perschel FH, González J-B, Fitzner RG, et al. Nicotine and biochanin A, but not cigarette smoke, induce anti-inflammatory effects on keratinocytes and endothelial cells in patients with Behcet's disease. J Investig Dermatol. 2007;127(1):81–9.

    CAS  PubMed  Google Scholar 

  24. Wang W, Tang L, Li Y, Wang Y. Biochanin A protects against focal cerebral ischemia/reperfusion in rats via inhibition of p38-mediated inflammatory responses. J Neurol Sci. 2015;348(1–2):121–5.

    CAS  PubMed  Google Scholar 

  25. Lawrence T, Bebien M, Liu GY, Nizet V, Karin M. IKKα limits macrophage NF-κB activation and contributes to the resolution of inflammation. Nature. 2005;434(7037):1138.

    CAS  PubMed  Google Scholar 

  26. Basu A, Das AS, Sharma M, Pathak MP, Chattopadhyay P, Biswas K, et al. STAT3 and NF-κB are common targets for kaempferol-mediated attenuation of COX-2 expression in IL-6-induced macrophages and carrageenan-induced mouse paw edema. Biochem Biophys Rep. 2017;12:54–61.

    PubMed  PubMed Central  Google Scholar 

  27. Margreitter C, Reif MM, Oostenbrink C. Update on phosphate and charged post-translationally modified amino acid parameters in the GROMOS force field. J Comput Chem. 2017;38(10):714–20.

    CAS  PubMed  Google Scholar 

  28. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1:19–25.

    Google Scholar 

  29. Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, et al. The ClusPro web server for protein–protein docking. Nat Protoc. 2017;12(2):255.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lin X, Sun T, Cai M, Shen P. Cell-death-mode switch from necrosis to apoptosis in hydrogen peroxide treated macrophages. Sci China Life Sci. 2010;53(10):1196–203.

    CAS  PubMed  Google Scholar 

  31. Forman HJ, Torres M. Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling. Am J Respir Crit Care Med. 2002;166(supplement_1):S4–S8.

    PubMed  Google Scholar 

  32. del Arco PG, Martı́nez-Martı́nez S, Maldonado JL, Ortega-Pérez I, Redondo JM. A role for the p38 MAP kinase pathway in the nuclear shuttling of NFATp. J Biol Chemi. 2000;275(18):13872-8

    Google Scholar 

  33. Ruspi G, Schmidt EM, McCann F, Feldmann M, Williams RO, Stoop AA, et al. TNFR2 increases the sensitivity of ligand-induced activation of the p38 MAPK and NF-κB pathways and signals TRAF2 protein degradation in macrophages. Cell Signal. 2014;26(4):683–90.

    CAS  PubMed  Google Scholar 

  34. Zhao Q, Shepherd EG, Manson ME, Nelin LD, Sorokin A, Liu Y. The role of mitogen-activated protein kinase phosphatase-1 in the response of alveolar macrophages to Lipopolysaccharide attenuation of proinflammatory cytokine biosynthesis via feedback control of p38. J Biol Chem. 2005;280(9):8101–8.

    CAS  PubMed  Google Scholar 

  35. Wood CD, Thornton TM, Sabio G, Davis RA, Rincon M. Nuclear Localization of p38 MAPK in Response to DNA Damage. Int J Biol Sci. 2009;5(5):428–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang J, Stark GR. Roles of unphosphorylated STATs in signaling. Cell Res. 2008;18(4):443–51.

    CAS  PubMed  Google Scholar 

  37. Vogt M, Domoszlai T, Kleshchanok D, Lehmann S, Schmitt A, Poli V, et al. The role of the N-terminal domain in dimerization and nucleocytoplasmic shuttling of latent STAT3. J Cell Sci. 2011;124(Pt 6):900–9.

    CAS  PubMed  Google Scholar 

  38. Choudhury GG, Ricono JM. Increased effect of interferon γ on PDGF-induced c-fos gene transcription in glomerular mesangial cells: differential effect of the transcriptional coactivator CBP on STAT1α activation. Biochem Biophys Res Commun. 2000;273(3):1069–77.

    Google Scholar 

  39. Yurtsever Z, Scheaffer SM, Romero AG, Holtzman MJ, Brett TJ. The crystal structure of phosphorylated MAPK13 reveals common structural features and differences in p38 MAPK family activation. Acta Crystallogr D Biol Crystallogr. 2015;71(4):790–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Korb A, Tohidast-Akrad M, Cetin E, Axmann R, Smolen J, Schett G. Differential tissue expression and activation of p38 MAPK α, β, γ, and δ isoforms in rheumatoid arthritis. Arthritis Rheum. 2006;54(9):2745–56.

    CAS  PubMed  Google Scholar 

  41. Pramanik R, Qi X, Borowicz S, Choubey D, Schultz RM, Han J, et al. p38 Isoforms have opposite effects on AP-1-dependent transcription through regulation of c-Jun the determinant role of the isoforms in the p38 MAPK signal specificity. J Biol Chem. 2003;278(7):4831–9.

    CAS  PubMed  Google Scholar 

  42. Piao CS, Che Y, Han P-L, Lee J-K. Delayed and differential induction of p38 MAPK isoforms in microglia and astrocytes in the brain after transient global ischemia. Mol Brain Res. 2002;107(2):137–44.

    CAS  PubMed  Google Scholar 

  43. Lemke LE, Bloem LJ, Fouts R, Esterman M, Sandusky G, Vlahos CJ. Decreased p38 MAPK activity in end-stage failing human myocardium: p38 MAPK α is the predominant isoform expressed in human heart. J Mol Cell Cardiol. 2001;33(8):1527–40.

    CAS  PubMed  Google Scholar 

  44. Mayya V, Lundgren DH, Hwang S-I, Rezaul K, Wu L, Eng JK, et al. Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal. 2009;2(84):ra46-ra.

    Google Scholar 

  45. Kumar ND, Damle NP, Mohanty D. Getting phosphorylated: is it necessary to be solvent accessible? Proc Indian Natn Sci Acad. 2015;81(2):493–507.

    Google Scholar 

  46. Ashida N, Arai H, Yamasaki M, Kita T. Distinct signaling pathways for MCP-1-dependent integrin activation and chemotaxis. J Biol Chem. 2001;276(19):16555–60.

    CAS  PubMed  Google Scholar 

  47. Papayianni A, Alexopoulos E, Giamalis P, Gionanlis L, Belechri AM, Koukoudis P, et al. Circulating levels of ICAM-1, VCAM-1, and MCP-1 are increased in haemodialysis patients: association with inflammation, dyslipidaemia, and vascular events. Nephrol Dial Transpl. 2002;17(3):435–41.

    CAS  Google Scholar 

  48. Mashili F, Chibalin AV, Krook A, Zierath JR. Constitutive STAT3 phosphorylation contributes to skeletal muscle insulin resistance in type 2 diabetes. Diabetes. 2013;62(2):457–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kuuliala K, Kuuliala A, Koivuniemi R, Oksanen S, Hämäläinen M, Moilanen E, Kautiainen H, Leirisalo-Repo M, Repo H. Constitutive STAT3 phosphorylation in circulating CD4+ T lymphocytes associates with disease activity and treatment response in recent-onset rheumatoid arthritis. PLoS One. 2015;10(9):e0137385.

    PubMed  PubMed Central  Google Scholar 

  50. Briviba K, Pan L, Rechkemmer G. Red wine polyphenols inhibit the growth of colon carcinoma cells and modulate the activation pattern of mitogen-activated protein kinases. J Nutr. 2002;132(9):2814–8.

    CAS  PubMed  Google Scholar 

  51. Chen C, Yu R, Owuor ED, Kong A-NT. Activation of antioxidant-response element (ARE), mitogen-activated protein kinases (MAPKs) and caspases by major green tea polyphenol components during cell survival and death. Archi Pharm Res. 2000;23(6):605.

    CAS  Google Scholar 

  52. Mansuri ML, Parihar P, Solanki I, Parihar MS. Flavonoids in modulation of cell survival signalling pathways. Genes Nutr. 2014;9(3):400.

    PubMed  PubMed Central  Google Scholar 

  53. Huang C-C, Wu W-B, Fang J-Y, Chiang H-S, Chen S-K, Chen B-H, et al. (-)-Epicatechin-3-gallate, a green tea polyphenol is a potent agent against UVB-induced damage in HaCaT keratinocytes. Molecules. 2007;12(8):1845–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Obata T, Brown GE, Yaffe MB. MAP kinase pathways activated by stress: the p38 MAPK pathway. Crit Care Med. 2000;28(4):N67–N77.

    CAS  PubMed  Google Scholar 

  55. Clark AR, Dean JL, Saklatvala J. The p38 MAPK pathway mediates both antiinflammatory and proinflammatory processes: comment on the article by Damjanov and the editorial by Genovese. Arthritis Rheum. 2009;60(11):3513–4.

    PubMed  Google Scholar 

  56. Szelenyi J, Selmeczy Z, Brozik A, Medgyesi D, Magocsi M. Dual β-adrenergic modulation in the immune system: Stimulus-dependent effect of isoproterenol on MAPK activation and inflammatory mediator production in macrophages. Neurochem Int. 2006;49(1):94–103.

    CAS  PubMed  Google Scholar 

  57. Kim C, Sano Y, Todorova K, Carlson BA, Arpa L, Celada A, et al. The kinase p38 alpha serves cell type-specific inflammatory functions in skin injury and coordinates pro- and anti-inflammatory gene expression. Nat Immunol. 2008;9(9):1019–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Guma M, Hammaker D, Topolewski K, Corr M, Boyle DL, Karin M, et al. Antiinflammatory functions of p38 in mouse models of rheumatoid arthritis advantages of targeting upstream kinases MKK-3 or MKK-6. Arthritis Rheum-Us. 2012;64(9):2887–955.

    CAS  Google Scholar 

  59. Bellon S, Fitzgibbon MJ, Fox T, Hsiao HM, Wilson KP. The structure of phosphorylated P38 gamma is monomeric and reveals a conserved activation-loop conformation. Struct Fold Des. 1999;7(9):1057–65.

    CAS  Google Scholar 

  60. Shen Y, Schlessinger K, Zhu X, Meffre E, Quimby F, Levy DE, et al. Essential role of STAT3 in postnatal survival and growth revealed by mice lacking STAT3 serine 727 phosphorylation. Mol Cell Biol. 2004;24(1):407–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Lin G-S, Chen Y-P, Lin Z-X, Wang X-F, Zheng Z-Q, Chen L. STAT3 serine 727 phosphorylation influences clinical outcome in glioblastoma. Int J Clin Exp Pathol. 2014;7(6):3141.

    PubMed  PubMed Central  Google Scholar 

  62. Cross TG, Scheel-Toellner D, Henriquez NV, Deacon E, Salmon M, Lord JM. Serine/threonine protein kinases and apoptosis. Exp Cell Res. 2000;256(1):34–41.

    CAS  PubMed  Google Scholar 

  63. Zhang CC, Li YL, Wu YN, Wang LY, Wang XN, Du J. Interleukin-6/signal transducer and activator of transcription 3 (STAT3) pathway is essential for macrophage infiltration and myoblast proliferation during muscle regeneration. J Biol Chem. 2013;288(3):1489–99.

    CAS  PubMed  Google Scholar 

  64. Han X, Wang YX, Chen HL, Zhang JW, Xu CM, Li J, et al. Enhancement of ICAM-1 via the JAK2/STAT3 signaling pathway in a rat model of severe acute pancreatitis-associated lung injury. Exp Ther Med. 2016;11(3):788–96.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Department of Biotechnology, Govt. of India (Twining project: BT/469/NE/TBP/2013 & U-Excel project: BT/410/NE/U-Excel/2013). We also acknowledge the High-Performance Computing Centre, Tezpur University (India), for use of the PARAM Shavak. We thank Dr. Sougata Saha and Dr. Suman Dasgupta, Department of MBBT, Tezpur University, for their technical help.

Author information

Authors and Affiliations

Authors

Contributions

The experimental studies, data analyses, and manuscript preparation were performed by Anandita Basu and Anindhya Sundar Das. The computational study and data analysis were performed by Pallab Kumar Borah and Raj Kumar Duary. Experiment designing, data analyses, manuscript preparation, and fund acquisition were done by Rupak Mukhopadhyay. The final version of the manuscript was approved by all the authors.

Corresponding author

Correspondence to Rupak Mukhopadhyay.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

Studies on human peripheral blood mononuclear cells (PBMCs) were performed with due approval from the Tezpur University Ethics Committee (IEC No: 01/2014, dated 30/4/2014) with informed consent from healthy volunteers.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3359 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basu, A., Das, A.S., Borah, P.K. et al. Biochanin A impedes STAT3 activation by upregulating p38δ MAPK phosphorylation in IL-6-stimulated macrophages. Inflamm. Res. 69, 1143–1156 (2020). https://doi.org/10.1007/s00011-020-01387-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-020-01387-1

Keywords

Navigation