Skip to main content
Log in

Random generation of 2D geometry-controlled particles via the epicycle series

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The discrete element method (DEM) represents a classical and popular research approach to exploring the particle shape effects of granular materials. For many modellers, the acquisition of irregular particle outlines is a problem of considerable practical importance. To mitigate this problem, a novel method based on epicycle series is introduced in this study, and it can produce geometry-controlled particles from two major shape indexes. First, the three key steps of the proposed method are explained: (1) a series of complex numbers, namely, the epicycle series, is used to represent the discrete outline of a particle; (2) the magnitudes of the epicycle descriptors are correlated with the particle shape indexes; and (3) the particle shape is controlled by predicting and adjusting the epicycle descriptors. Then, sensitivity analysis and a case study are conducted to test the proposed method's capacity for reproducing particle shape features. The results suggest that the proposed framework can generate granular particles with accurately controlled shape indexes and realistic outlines, which can facilitate the DEM modelling of irregular particles.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Cundall, P.A., Strack, O.D.L.: A discrete numerical mode for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  2. Feng, Y.T., Han, K., Owen, D.R.J.: Filling domains with disks: an advancing front approach. Int. J. Numer. Methods Eng. 56(5), 699–713 (2003). https://doi.org/10.1002/nme.583

    Article  MATH  Google Scholar 

  3. Gong, J., Liu, J.: Effect of aspect ratio on triaxial compression of multi-sphere ellipsoid assemblies simulated using a discrete element method. Particuology 32(3), 49–62 (2017)

    Article  Google Scholar 

  4. Gong, J., Nie, Z., Zhu, Y., Liang, Z., Wang, X.: Exploring the effects of particle shape and content of fines on the shear behavior of sand-fines mixtures via the DEM. Comput. Geotech. 106, 161–176 (2019). https://doi.org/10.1016/j.compgeo.2018.10.021

    Article  Google Scholar 

  5. Liu, Y., Liu, H., Mao, H.: The influence of rolling resistance on the stress-dilatancy and fabric anisotropy of granular materials. Granular Matter 20(1), 12 (2018). https://doi.org/10.1007/s10035-017-0780-z

    Article  Google Scholar 

  6. Cho, G.C., Dodds, J., Santamarina, J.C.: Particle shape effects on packing density, stiffness, and strength: Natural and crushed sands. J. Geotech. Geoenviron. Eng. 132(5), 591–602 (2006). https://doi.org/10.1061/(asce)1090-0241(2006)132:5(591)

    Article  Google Scholar 

  7. Zhao, S.W., Evans, T.M., Zhou, X.W.: Shear-induced anisotropy of granular materials with rolling resistance and particle shape effects. Int. J. Solids Struct. 150, 268–281 (2018). https://doi.org/10.1016/j.ijsolstr.2018.06.024

    Article  Google Scholar 

  8. Mollon, G., Zhao, J.: Fourier–Voronoi-based generation of realistic samples for discrete modelling of granular materials. Granular Matter 14(5), 621–638 (2012)

    Article  Google Scholar 

  9. Zhao, L.H., Huang, D.L., Dan, H.C., Zhang, S.H., Li, D.J.: Reconstruction of granular railway ballast based on inverse discrete Fourier transform method. Granular Matter 19(4), 17 (2017). https://doi.org/10.1007/s10035-017-0761-2

    Article  ADS  Google Scholar 

  10. Wang, X., Liang, Z., Nie, Z., Gong, J.: Stochastic numerical model of stone-based materials with realistic stone-inclusion features. Constr. Build. Mater. (2018). https://doi.org/10.1016/j.conbuildmat.2018.10.062

    Article  Google Scholar 

  11. He, H., Zheng, J., Sun, Q., Li, Z.: Simulation of realistic particles with bullet physics engine. EDP Sci. 92, 14004 (2019)

    Google Scholar 

  12. Biswal, B., Oren, P.E., Held, R.J., Bakke, S., Hilfer, R.: Stochastic multiscale model for carbonate rocks. Phys. Rev. E 75(6), 5 (2007). https://doi.org/10.1103/PhysRevE.75.061303

    Article  Google Scholar 

  13. Dong, K.J., Wang, C.C., Yu, A.B.: A novel method based on orientation discretization for discrete element modeling of non-spherical particles. Chem. Eng. Sci. 126, 500–516 (2015). https://doi.org/10.1010/j.ces.2014.12.059

    Article  Google Scholar 

  14. Tahmasebi, P., Sahimi, M.: A stochastic multiscale algorithm for modeling complex granular materials. Granular Matter 20(3), 4519–4541 (2018). https://doi.org/10.1007/s10035-018-0816-z

    Article  Google Scholar 

  15. Zheng, J., Hryciw, R.D.: A corner preserving algorithm for realistic DEM soil particle generation. Granular Matter 18(4), 84 (2016)

    Article  Google Scholar 

  16. Ferellec, J.-F., McDowell, G.R.: A simple method to create complex particle shapes for DEM. Geomech. Geoeng. 3(3), 211–216 (2008)

    Article  Google Scholar 

  17. Gong, J., Liu, J., Cui, L.: Shear behaviors of granular mixtures of gravel-shaped coarse and spherical fine particles investigated via discrete element method. Powder Technol. 353, 178–194 (2019). https://doi.org/10.1016/j.powtec.2019.05.016

    Article  Google Scholar 

  18. Norbert, M., Zhou, W.: Flat and Elongated: advances using digital image analysis (1998)

  19. Descantes, Y., Fosse, Y., Milcent, F.D.R.: Automated measurement of railway ballast angularity. J. Mater. Civ. Eng. 18(4), 612–618 (2006)

    Article  Google Scholar 

  20. Tahmasebi, P.: Packing of discrete and irregular particles. Comput. Geotech. 100, 52–61 (2018)

    Article  Google Scholar 

  21. Wang, Z.M., Kwan, A.K.H., Chan, H.C.: Mesoscopic study of concrete I: generation of random aggregate structure and finite element mesh. Comput. Struct. 70(5), 533–544 (1999)

    Article  Google Scholar 

  22. Mollon, G., Zhao, J.: Realistic generation and packing of DEM sand samples (2012)

  23. Wang, Z., Wang, L., Zhang, W.: A random angular bend algorithm for two- dimensional discrete modeling of granular materials. Materials 12, 2169 (2019). https://doi.org/10.3390/ma12132169

    Article  ADS  Google Scholar 

  24. Tillemans, H.-J., Herrmann, H.J.: Simulating deformations of granular solids under shear. Phys. A 217(3), 261–288 (1995). https://doi.org/10.1016/0378-4371(95)00111-J

    Article  Google Scholar 

  25. Wang, X., Jian, G., Zhihong, N.: Random generation of convex granule packing based on weighted Voronoi tessellation and cubic-polynomial-curve fitting. Comput. Geotech. (2019). https://doi.org/10.1016/j.compgeo.2019.05.003

    Article  Google Scholar 

  26. Galindo-Torres, S.A., Pedroso, D.M.: Molecular dynamics simulations of complex-shaped particles using Voronoi-based spheropolyhedra. Phys. Rev. E 81(6), 9 (2010). https://doi.org/10.1103/PhysRevE.81.061303

    Article  Google Scholar 

  27. Frigo, Matteo, Johnson, G.S.: The design and implementation of FFTW3. Proc. IEEE 93(2), 216–231 (2005)

    Article  Google Scholar 

  28. Muñiz, E.O.: A method for deriving various formulas in electrostatics and electromagnetism using Lagrange's trigonometric identities. Am. J. Phys. 21(2), 140 (1953)

    Article  ADS  Google Scholar 

  29. Mathologer: Epicycles, complex Fourier series and Homer Simpson’s orbit. In. Youtube, (2018)

  30. ISO: ISO 9276-6:2008: Representation of results of particle size analysis In: Part 6: Descriptive and quantitative representation of particle shape and morphology. ISO, Geneva, Switzerland:, (2008)

  31. Barrett, P.J.: The shape of rock particles, a critical review. Sedimentology 27(3), 291–303 (1980)

    Article  ADS  Google Scholar 

  32. Kozicki, J., Tejchman, J., Mroz, Z.: Effect of grain roughness on strength, volume changes, elastic and dissipated energies during quasi-static homogeneous triaxial compression using DEM. Granular Matter 14(4), 457–468 (2012). https://doi.org/10.1007/s10035-012-0352-1

    Article  Google Scholar 

  33. Company, P.I.: Aggregate Image Measurement System operation manual. AFA2A. Pine Instrument Company, Test Equipment Division, Grove City, PA (2014)

    Google Scholar 

  34. Itasca, C.G.: PFC 5.0 documentation

  35. Zhihong, N., Zhu, Y., Wang, X., Jian, G.: Investigating the effects of Fourier-based particle shape on the shear behaviors of rockfill material via DEM. Granular Matter 21(2), 22 (2019)

    Article  Google Scholar 

  36. Qian, Q., An, X., Zhao, H., Dong, K., Yang, X.: Numerical investigations on random close packings of cylindrical particles with different aspect ratios. Powder Technol. 343, 343 (2018). https://doi.org/10.1016/j.powtec.2018.11.014

    Article  Google Scholar 

  37. Mohamed, A., Gutierrez, M.: Comprehensive study of the effects of rolling resistance on the stress–strain and strain localization behavior of granular materials. Granular Matter 12(5), 527–541 (2010). https://doi.org/10.1007/s10035-010-0211-x

    Article  MATH  Google Scholar 

  38. Hentschel, M.L., Page, N.W.: Selection of descriptors for particle shape characterization. Part. Part. Syst. Charact. 20(1), 25–38 (2003). https://doi.org/10.1002/ppsc.200390002

    Article  Google Scholar 

  39. Byrd, R., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16(5), 1190–1208 (2003). https://doi.org/10.1137/0916069

    Article  MathSciNet  MATH  Google Scholar 

  40. Devroye, L.: Non-uniform random variate generation, vol. 3. Springer, New York (1990)

    MATH  Google Scholar 

  41. Yuan, W., Chin, K.S., Hua, M., Dong, G.N., Wang, C.H.: Shape classification of wear particles by image boundary analysis using machine learning algorithms. Mech. Syst. Signal Proc. 72–73(1), 346–358 (2016). https://doi.org/10.1016/j.ymssp.2015.10.013

    Article  ADS  Google Scholar 

  42. Dong, K., Wang, C., Yu, A.: Voronoi analysis of the packings of non-spherical particles. Chem. Eng. Sci. 153, 330–343 (2016)

    Article  Google Scholar 

  43. Donev, A., Cisse, I., Sachs, D., Variano, E., Stillinger, F.H., Connelly, R., Torquato, S., Chaikin, P.M.: Improving the density of jammed disordered packings using ellipsoids. Science 303(5660), 990–993 (2004). https://doi.org/10.1126/science.1093010

    Article  ADS  Google Scholar 

  44. Tangri, H., Yu, G., Curtis, J.S.: Packing of cylindrical particles: DEM simulations and experimental measurements. Powder Technol. 317, 72–82 (2017)

    Article  Google Scholar 

  45. Taghavi, R.: Automatic clump generation based on mid-surface (2011)

  46. Wei, D., Wang, J., Zhao, B.: A simple method for particle shape generation with spherical harmonics. Powder Technol. 330, 284–291 (2018)

    Article  ADS  Google Scholar 

  47. Chen, J., Wang, H., Dan, H., Xie, Y.: Random modeling of three-dimensional heterogeneous microstructure of asphalt concrete for mechanical analysis. J. Eng. Mech. 144(9), 04018083 (2018)

    Article  Google Scholar 

  48. Zhao, S., Evans, T., Zhou, X.: Effects of curvature-related DEM contact model on the macro- and micro-mechanical behaviours of granular soils. Géotechnique (2018). https://doi.org/10.1680/jgeot.17.p.158

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 51809292 and 51478481) and the Fundamental Research Funds for the Central Universities of Central South University (1053320182887). The support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihong Nie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Z., Wang, X., Gong, J. et al. Random generation of 2D geometry-controlled particles via the epicycle series. Granular Matter 22, 84 (2020). https://doi.org/10.1007/s10035-020-01031-z

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-020-01031-z

Keywords

Navigation