Skip to main content
Log in

A Multi-Inlet Microfluidic Nozzle Head with Shape Memory Alloy-Based Switching for Biomaterial Printing with Precise Flow Control

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

3D bioprinting is one of the rapidly evolving fields of tissue engineering where microengineering meets cells biology within an unprecedented precision to construct tissue structures of various forms with complexity. However, enabling simultaneous printing of heterogeneous biomaterial along with scaffold components through the currently available printers is still considered as a major challenge due to the lack of instrumentation. Flow control is one of the major issues associated with the process. In this aspect, a microfluidic nozzle head equipped with two shape-memory alloy (SMA) actuators was proposed and integrated with a commercially available 3D printer to assist the biomaterial printing in a more systematic manner. The SMA actuator restrains the amount of flows for fabricating the desired scaffold components. Experimental results illustrated that the use of SMA actuator ensued a rapid and precise flow control of biomaterial and can further facilitate to maintain the width of any printed structures. As a proof of concept for the profound biomedical applications with the present manufacturing configuration, a 3D printed hydrogel platform was fabricated with demonstrated characters for later cell seeding after the printing further opens a new chapter in terms of biomaterial printing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Hopkinson, N., Hague, R. & Dickens, P. Rapid manufacturing: an industrial revolution for the digital age. (John Wiley & Sons, 2006).

  2. Wong, K.V. & Hernandez, A. A review of additive manufacturing. ISRN Mech. Eng., 2012 208760 (2012).

    Google Scholar 

  3. Huang, S.H., Liu, P., Mokasdar, A. & Hou, L. Additive manufacturing and its societal impact: a literature review. Int. J. Adv. Manuf. Tech., 67 1191–1203 (2013).

    Google Scholar 

  4. Vaezi, M., Seitz, H. & Yang, S. A review on 3D micro-additive manufacturing technologies. Int. J. Adv. Manuf. Tech., 67 1721–1754 (2013).

    Google Scholar 

  5. Ozbolat, I.T. Special issue on three-dimensional bioprinting. J. Nanotechnol. Eng. Med., 6 020301 (2015).

    Google Scholar 

  6. Mironov, V., Trusk, T., Kasyanov, V., Little, S., Swaja, R. & Markwald, R. Biofabrication: a 21st century manufacturing paradigm. Biofabrication, 1 022001 (2009).

    CAS  PubMed  Google Scholar 

  7. Murphy, S.V. & Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol., 32 773–785 (2014).

    CAS  Google Scholar 

  8. Zhu, W., Ma, X., Gou, M., Mei, D., Zhang, K. & Chen, S. 3D printing of functional biomaterials for tissue engineering. Curr. Opin. Biotechnol., 40 103–112 (2016).

    CAS  PubMed  Google Scholar 

  9. Huh, D., Hamilton, G.A. & Ingber, D.E. From 3D cell culture to organs-on-chips. Trends Cell Biol., 21 745–754 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Crowley, C., Birchall, M. & Seifalian, A.M. Trachea transplantation: from laboratory to patient. J. Tissue Eng. Regener. Med., 9 357–367 (2015).

    Google Scholar 

  11. Mironov, V., Visconti, R.P., Kasyanov, V., Forgacs, G., Drake, C.J. & Markwald, R.R. Organ printing: tissue spheroids as building blocks. Biomaterials, 30 2164–2174 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ovsianikov, A., Gruene, M., Pflaum, M., Koch, L., Maiorana, F., Wilhelmi, M., Haverich, A. & Chichkov, B. Laser printing of cells into 3D scaffolds. Biofabrication, 2 014104 (2010).

    CAS  PubMed  Google Scholar 

  13. Ilkhanizadeh, S., Teixeira, A.I. & Hermanson, O. Inkjet printing of macromolecules on hydrogels to steer neural stem cell differentiation. Biomaterials, 28 3936–3943 (2007).

    CAS  PubMed  Google Scholar 

  14. Kirchmajer, D.M. & Gorkin III, R. An overview of the suitability of hydrogel-forming polymers for extrusion-based 3D-printing. J Mater. Chem. B, 3 4105–4117 (2015).

    CAS  PubMed  Google Scholar 

  15. Sun, J., Ng, J.H., Fuh, Y.H., Wong, Y.S., Loh, H.T. & Xu, Q. Comparison of micro-dispensing performance between micro-valve and piezoelectric printhead. Microsyst. Technol., 15 1437–1448 (2009).

    CAS  Google Scholar 

  16. Dai, G. & Lee, V. Three-dimensional bioprinting and tissue fabrication: prospects for drug discovery and regenerative medicine. Adv. Health Care Technol, 1 23–35 (2015).

    Google Scholar 

  17. Ozbolat, I. T. & Hospodiuk, M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials, 76 321–343 (2016).

    CAS  PubMed  Google Scholar 

  18. Hölzl, K., Lin, S., Tytgat, L., Van Vlierberghe, S., Gu, L. & Ovsianikov, A. Bioink properties before, during and after 3D bioprinting. Biofabrication, 8 032002 (2016).

    PubMed  Google Scholar 

  19. Blaeser, A. Campos, D.F.D., Puster, U., Richtering, W., Stevens, M.M. & Fischer, H. Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity. Adv. Healthcare Mater., 5 326–333 (2016).

    CAS  Google Scholar 

  20. Chen, C.-Y., Chen, C.-Y., Lin, C.-Y. & Hu, Y.-T. Magnetically actuated artificial cilia for optimum mixing performance in microfluidics. Lab Chip, 13 2834–2839 (2013).

    CAS  PubMed  Google Scholar 

  21. Panigrahi, B. & Chen, C.-Y. Microfluidic retention of progressively motile zebrafish sperms. Lab Chip, 19 4033–4042 (2019).

    CAS  PubMed  Google Scholar 

  22. Atencia, J. & Beebe, D.J. Controlled microfluidic interfaces. Nature, 437 648–655 (2005).

    CAS  PubMed  Google Scholar 

  23. Jacobson, S.C., Ermakov, S.V. & Ramsey, J.M. Minimizing the number of voltage sources and fluid reservoirs for electrokinetic valving in microfluidic devices. Anal. Chem., 71 3273–3276 (1999).

    CAS  PubMed  Google Scholar 

  24. Voldman, J., Gray, M.L. & Schmidt, M.A. An integrated liquid mixer/valve. J. Microelectromech. Syst., 9 295–302 (2000).

    CAS  Google Scholar 

  25. Sundararajan, N., Kim, D.S. & Berlin, A.A. Microfluidic operations using deformable polymer membranes fabricated by single layer soft lithography. Lab Chip, 5 350–354 (2005).

    CAS  PubMed  Google Scholar 

  26. Irimia, D., Liu, S.-Y., Tharp, W.G., Samadani, A., Toner, M. & Poznansky, M.C. Microfluidic system for measuring neutrophil migratory responses to fast switches of chemical gradients. Lab Chip, 6 191–198 (2006).

    CAS  PubMed  Google Scholar 

  27. Li, N.Z., Hsu, C.H. & Folch, A. Parallel mixing of photolithographically defined nanoliter volumes using elastomeric microvalve arrays. Electrophoresis, 26 3758–3764 (2005).

    CAS  PubMed  Google Scholar 

  28. Baek, J.Y., Park, J.Y., Ju, J.I., Lee, T.S. & Lee, S.H. A pneumatically controllable flexible and polymeric microfluidic valve fabricated via in situ development. J. Micromech. Microeng., 15 1015–1020 (2005).

    Google Scholar 

  29. Gu, W., Chen, H. & Tung, Y.-C. Multiplexed hydraulic valve actuation using ionic liquid filled soft channels and Braille displays. Appl. Phys. Lett., 90 033505 (2007).

    Google Scholar 

  30. Weibel, D.B., Siegel, A.C., Lee, A., George, A.H. & Whitesides, G.M. Pumping fluids in microfluidic systems using the elastic deformation of poly (dimethylsiloxane). Lab Chip, 7 1832–1836 (2007).

    CAS  PubMed  Google Scholar 

  31. Kaigala, G.V., Hoang, V.N. & Backhouse, C.J. Electrically controlled microvalves to integrate microchip polymerase chain reaction and capillary electrophoresis. Lab Chip, 8 1071–1078 (2008).

    CAS  PubMed  Google Scholar 

  32. Yang, B.Z. & Lin, Q. A latchable microvalve using phase change of paraffin wax. Sens. Actuators, A, 134 194–200 (2007).

    CAS  Google Scholar 

  33. Snyder, J., Son, A.R., Hamid, Q., Wu, H. & Sun, W. Hetero-cellular prototyping by synchronized multimaterial bioprinting for rotary cell culture system. Biofabrication, 8 015002 (2016).

    PubMed  Google Scholar 

  34. Bsoul, A., Pan, S., Cretu, E., Stoeber, B. & Walus, K. Design, microfabrication, and characterization of a moulded PDMS/SU-8 inkjet dispenser for a Lab-on-a-Printer platform technology with disposable microfluidic chip. Lab Chip, 16 3351–3361 (2016).

    CAS  PubMed  Google Scholar 

  35. Benda, P., Lightbody, J., Sato, G., Levine, L. & Sweet, W. Differentiated rat glial cell strain in tissue culture. Science, 161 370–371 (1968).

    CAS  PubMed  Google Scholar 

  36. Wiche, G. & Cole, R.D. Reversible in vitro polymerization of tubulin from a cultured cell line (rat glial cell clone C6). Proc. Natl. Acad. Sci. U.S.A., 73 1227–1231 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu, H.M. Fabrication of nitinol materials and components. Mater. Sci. Forum, 394 285–292 (2002).

    Google Scholar 

  38. Mani, K., Chien, T.-C.C., Panigrahi, B. & Chen, C.-Y. Manipulation of zebrafish’s orientation using artificial cilia in a microchannel with actively adaptive wall design. Sci. Rep., 6 36385 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lu, Y.-H., Mani, K., Panigrahi, B., Hajari, S. & Chen, C.-Y. A shape memory alloy-based miniaturized actuator for catheter interventions. Cardiovasc. Eng. Technol., 9 405–413 (2018).

    PubMed  Google Scholar 

  40. Mc Caffrey, C., Umedachi, T., Jiang, W., Sasatani, T., Narusue, Y., Niiyama, R. & Kawahara, Y. Continuum robotic caterpillar with wirelessly powered shape memory alloy actuators. Soft Robotics DOI https://doi.org/10.1089/soro.2019.0090 (2020)

  41. Asamura, K. & Nagasawa, S. MEMS fabrication of compliant sheet for micro hexapod robots. Jpn. J. Appl. Phys. 59, DOI https://doi.org/10.35848/1347-4065/ab7439 (2020).

References

  1. He, Y., Yang, F.F., Zhao, H.M., Gao, Q., Xia, B. & Fu, J.Z. Research on the printability of hydrogels in 3D bioprinting. Sci. Rep. 6, 29977 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Wong, K.H., Chan, J.M., Kamm, R.D. & Tien, J. Microfluidic models of vascular functions. Annu. Rev. Biomed. Eng. 14, 205–230 (2012).

    CAS  PubMed  Google Scholar 

  3. Dewey, C., Bussolari, S., Gimbrone, M. & Davies, P. The dynamic response of vascular endothelial cells to fluid shear stress. J. Biomech. Eng. 103, 177–185 (1981).

    PubMed  Google Scholar 

  4. Blaeser, A., Campos, D.F.D, Puster, U., Richtering, W., Stevens, M.M. & Fischer, H. Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity. Adv. Healthcare Mater. 5, 326–333 (2016).

    CAS  Google Scholar 

  5. Chang, R., Nam, J. & Sun, W. Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing. Tissue Eng., Part A 14, 41–48 (2008).

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported through the Ministry of Science and Technology of Taiwan under Contract No. MOST 108-2221-E-006-22 1-MY4 (to Chia-Yuan Chen). This work would not be possible without the facility provided by Center for Micro/Nano Science and Technology, National Cheng Kung University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Yuan Chen.

Additional information

Conflict of Interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mani, K., Lin, WC., Wang, CF. et al. A Multi-Inlet Microfluidic Nozzle Head with Shape Memory Alloy-Based Switching for Biomaterial Printing with Precise Flow Control. BioChip J 14, 340–348 (2020). https://doi.org/10.1007/s13206-020-4402-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-020-4402-1

Keywords

Navigation