Skip to main content
Log in

Thiazolidine-2-Thione and 2-Imino-1,3-Dithiolane Derivatives: Synthesis and Evaluation of Antimicrobial Activity

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

The emergence of antibiotic resistance is one of the most important public health concerns in the world. To solve this major problem, a series of antimicrobial compounds have been synthesized and tested against bacteria, yeast and fungi microorganisms. Thiazolidines and dithiolanes possess many biological activities against microbial strains. In this study, a facile free-solvent method for the synthesis of thiazolidine derivatives by one-pot reaction was developed and their biological activity was evaluated in comparison to 2-imino-1,3-dithiolanes. Microbial inhibition growth effects of the synthesized against microbial species compounds were characterized in terms of disk diffusion and minimum inhibitory concentration (MIC) methods, The MICs of the synthesized compounds were determined and the results showed that almost all synthesized compounds have antimicrobial potential. All thiazolidines are effective candidates for antimicrobial activity against C. albicans and A. niger species and all dithiolanes are strong antibiotics against P. aeruginosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. M. Aghazadeh, A. Zahedi Bialvaei, F. Kabiri, et al., Jundishapur J. Microbiol., 9(2), e30167 (2016).

    Google Scholar 

  2. V. Akhmetova, N. Akhmadiev, E. Meshcheryakova, et al., Chemi. Heterocycl. Compd., 50(5), 742 – 751 (2014).

    Article  CAS  Google Scholar 

  3. A. Alizadeh, N. Zohreh, H. Sabahnoo, et al., Tetrahedron, 67(9), 1709 – 1715 (2011).

    Article  CAS  Google Scholar 

  4. H. R. Ashjari, M. S. S. Dorraji, V. Fakhrzadeh, et al., Int. J. Biol. Macromol., 21(17), 34569 – 5 (2018).

    Google Scholar 

  5. M. Banimustafa, A. Kheirollahi, M. Safavi, et al., Eur. J. Med. Chem., 70, 692 – 702 (2013).

    Article  CAS  Google Scholar 

  6. R. S. Bhatti, S. Shah, P. Krishan, et al., Int. J. Med. Chem., 2013, 793260 (2013).

    Google Scholar 

  7. A. Z. Bialvaei, H. S. Kafil, M. Asgharzadeh, et al., Braz. J. Microbiol., 47(3), 706 – 11 (2016).

    Article  CAS  Google Scholar 

  8. J. D. S. Chaves, F. Neumann, T. M. Francisco, et al., Inorg. Chim. Acta, 414, 85 – 90 (2014).

    Article  CAS  Google Scholar 

  9. N. Chen, H. Du,W. Liu, et al., Phosphorus, Sulfur, Silicon Relat. Elem., 190(1), 112 – 122 (2015).

    Article  CAS  Google Scholar 

  10. R. C. Cioc, E. Ruijter, and R. V. Orru, Green Chem., 16(6), 2958 – 2975 (2014).

    Article  CAS  Google Scholar 

  11. R. S. Corrêa, M. M. da Silva, A. E. Graminha, et al., J. Inorg. Biochem., 156, 153 – 163 (2016).

    Article  Google Scholar 

  12. D. Delaunay, L. Toupet, and M. L. Corre, J. Org. Chem., 60(20), 6604 – 6607 (1995).

    Article  CAS  Google Scholar 

  13. X. Deng, N. Chen, Z. Wang, et al., Phosphorus, Sulfur, Silicon Related Elem., 186(7), 1563 – 1571 (2011).

    Article  CAS  Google Scholar 

  14. N. Desai, A. M. Dodiya, and A. H. Makwana, Med. Chem. Res., 21(9), 2320 – 2328 (2012).

    Article  CAS  Google Scholar 

  15. O. Di Pietro, E. Vicente-Garcia, M. C. Taylor, et al., Eur. J. Med. Chem., 105, 120 – 137 (2015).

    Article  Google Scholar 

  16. V. Estévez, M. Villacampa, and J. C. Menéndez, Chem. Soc. Rev., 43(13), 4633 – 4657 (2014).

    Article  Google Scholar 

  17. S.-F. Gan, J.-P. Wan, Y.-J. Pan, et al., Synlett, 2010 (06), 973 – 975 (2010).

    Article  Google Scholar 

  18. A. D. Gutman, US Patent 4414019 A (1983).

  19. A. Z. Halimehjani, H. Maleki, and M. R. Saidi, Tetrahedron Lett., 50(23), 2747 – 2749 (2009).

    Article  CAS  Google Scholar 

  20. P. Hawkey and D. Lewis, in: Medical Bacteriology: A Practical Approach, OUP, Oxford (2003), Vol. 265.

    Google Scholar 

  21. H. S. Kafil, A. M. Mobarez, M. F. Moghadam, et al., Microb. Pathog., 92, 30 – 5 (2016).

    Article  CAS  Google Scholar 

  22. T. Lammers, V. Šubr, K. Ulbrich, et al., Biomaterials, 30(20), 3466 – 3475 (2009).

    Article  CAS  Google Scholar 

  23. F. G. Medina, J. G. Marrero, M. Macias-Alonso, et al., Nat. Prod. Rep., 32 (10), 1472 – 1507 (2015).

    Article  CAS  Google Scholar 

  24. Y. Nagao, Y. Hagiwara, T. Kumagai, et al., J. Org. Chem., 51(12), 2391 – 2393 (1986).

    Article  CAS  Google Scholar 

  25. U. M. Rabie, M. H. Abou-El-Wafa, and H. Nassar, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 79(5), 1411 – 1417 (2011).

    Article  CAS  Google Scholar 

  26. M. a. V. Roux, M. Temprado, P. Jiménez, et al., J. Phys. Chem. A, 113(40), 10772 – 10778 (2009).

  27. K. D. Safa, M. Alyari, Synthesis, 47(02), 256 – 262 (2015).

    Article  CAS  Google Scholar 

  28. K. D. Safa, M. Alyari, J. Sulfur Chem., 37(3), 340 – 348 (2016).

    Article  CAS  Google Scholar 

  29. K. D. Safa, M. Esmaili, and M. Allahvirdinesbat, J. Iranian Chem. Soc., 13(2), 267 – 277 (2016).

    Article  CAS  Google Scholar 

  30. M. Shamszad, M. Crimmins, 3.2 Amino Acid Derived Heterocyclic Chiral Auxiliaries, in: Comprehensive Chirality, Elsevier (2012).

  31. V. Šubr and K. Ulbrich, React. Funct. Polym., 66(12), 1525 – 1538 (2006).

    Article  Google Scholar 

  32. L. Tao, J. Liu, J. Xu, et al., Org. Biomol. Chem., 7(17), 3481 – 3485 (2009).

    Article  CAS  Google Scholar 

  33. E. G. Teach, US Patent 4451280A (1984).

  34. F. Velázquez and H. F. Olivo, Curr. Org. Chem., 6(4), 303 – 340 (2002).

    Article  Google Scholar 

  35. M. A. Wikler, Performance Standards for Antimicrobial Susceptibility Testing, Sixteenth Informational Supplement, CLSI Document M07-A9, Clinical and Laboratory Standards Institute (2012).

  36. Y. Zhang, T. Sammakia, Org. Lett., 6(18), 3139 – 3141 (2004).

    Article  CAS  Google Scholar 

  37. A. Ziyaei-Halimehjani, K. Marjani, and A. Ashouri, Tetrahedron Lett., 53 (27), 3490 – 3492 (2012).

    Article  CAS  Google Scholar 

  38. M. Alyari, M. G. Mehrabani, K. D. Safa, et al., Arkivoc. 2017, (part iv), 145–157 (2017).

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the University of Tabriz for financial support and Tabriz Applied Research Centre of Tabriz University of Medical Science for supporting this study with grant number 61703 with ethic committee confirmation number IR. TBZMED. VCR. REC.1397.412.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazem Dindar Safa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehrabani, M.G., Safa, K.D., Rahimi, M. et al. Thiazolidine-2-Thione and 2-Imino-1,3-Dithiolane Derivatives: Synthesis and Evaluation of Antimicrobial Activity. Pharm Chem J 54, 588–595 (2020). https://doi.org/10.1007/s11094-020-02244-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-020-02244-5

Keywords

Navigation