Skip to main content
Log in

The retention of fall-resisting behavior derived from treadmill slip-perturbation training in community-dwelling older adults

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

The purpose of this study was to determine whether and to what extent the immediate generalization of treadmill slip-perturbation training could be retained over 6 months to resist overground slip-induced falls. Four protocols (Tc: treadmill control; Tt: treadmill slip-perturbation training; Oc: overground control; Ot: overground slip-perturbation training) from two randomized controlled trials were compared in which two training protocols were executed with single-session repeated slip-perturbation training on the treadmill or overground context, while two control protocols were executed without repeated training. A total of 152 community-dwelling older adults (≥ 65 years) who were trained by one of the four protocols and tested by an overground slip in the initial session attended a retest session 6 months later. Falls were detected by a load cell. Data collected from motion analysis system and force plates were used to calculate stability. Tt group had no significant change in fall incidence from initial post-training test to retest. Tt group had significantly lower fall incidence (p < 0.05) and higher reactive stability (p < 0.05) than Tc group in retest. Tt group had significantly higher fall incidence (p < 0.05) and lower reactive stability (p < 0.01) than Ot group. The generalization of a single session of treadmill slip-perturbation training to overground slip resulted in inferior outcomes compared with overground slip-perturbation training (absolute retention), although the training generalization could be retained over 6 months (relative retention). Thus, treadmill slip-perturbation training could be more convenient to use if future dose-response studies indicate better or equal efficacy to overground slip-perturbation training.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hayes WC, Myers ER, Robinovitch SN, Van Den Kroonenberg A, Courtney AC, McMahon TA. Etiology and prevention of age-related hip fractures. Bone. 1996;18(1 Suppl):77S–86S. https://doi.org/10.1016/8756-3282(95)00383-5.

    Article  CAS  PubMed  Google Scholar 

  2. Morley JE. A fall is a major event in the life of an older person. J Gerontol A Biol Sci Med Sci. 2002;57(8):M492–5. https://doi.org/10.1093/gerona/57.8.m492.

    Article  PubMed  Google Scholar 

  3. Lord SR, Ward JA, Williams P, Strudwick M. The effect of a 12-month exercise trial on balance, strength, and falls in older women: a randomized controlled trial. J Am Geriatr Soc. 1995;43(11):1198–206. https://doi.org/10.1111/j.1532-5415.1995.tb07394.x.

    Article  CAS  PubMed  Google Scholar 

  4. Schoene D, Lord SR, Delbaere K, Severino C, Davies TA, Smith ST. A randomized controlled pilot study of home-based step training in older people using videogame technology. PLoS One. 2013;8(3):e57734. https://doi.org/10.1371/journal.pone.0057734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wolf SL, Barnhart HX, Kutner NG, McNeely E, Coogler C, Xu T. Reducing frailty and falls in older persons: an investigation of Tai Chi and computerized balance training. Atlanta FICSIT Group. Frailty and Injuries: Cooperative Studies of Intervention Techniques. J Am Geriatr Soc. 1996;44(5):489–97. https://doi.org/10.1111/j.1532-5415.1996.tb01432.x.

    Article  CAS  PubMed  Google Scholar 

  6. Wolpert DM, Ghahramani Z. Computational principles of movement neuroscience. Nat Neurosci. 2000;3(Suppl):1212–7. https://doi.org/10.1038/81497.

    Article  CAS  PubMed  Google Scholar 

  7. Liu X, Reschechtko S, Wang S, Pai YC. The recovery response to a novel unannounced laboratory-induced slip: the "first trial effect" in older adults. Clin Biomech (Bristol, Avon). 2017;48:9–14. https://doi.org/10.1016/j.clinbiomech.2017.06.004.

  8. Mansfield A, Wong JS, Bryce J, Knorr S, Patterson KK. Does perturbation-based balance training prevent falls? Systematic review and meta-analysis of preliminary randomized controlled trials. Phys Ther. 2015;95(5):700–9. https://doi.org/10.2522/ptj.20140090.

    Article  PubMed  Google Scholar 

  9. Bhatt T, Pai YC. Generalization of gait adaptation for fall prevention: from moveable platform to slippery floor. J Neurophysiol. 2009;101(2):948–57. https://doi.org/10.1152/jn.91004.2008.

    Article  CAS  PubMed  Google Scholar 

  10. Parijat P, Lockhart TE. Effects of moveable platform training in preventing slip-induced falls in older adults. Ann Biomed Eng. 2012;40(5):1111–21. https://doi.org/10.1007/s10439-011-0477-0.

    Article  PubMed  Google Scholar 

  11. Okubo Y, Brodie MA, Sturnieks DL, Hicks C, Carter H, Toson B, et al. Exposure to trips and slips with increasing unpredictability while walking can improve balance recovery responses with minimum predictive gait alterations. PLoS One. 2018;13(9):e0202913. https://doi.org/10.1371/journal.pone.0202913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Joh AS, Adolph KE. Learning from falling. Child Dev. 2006;77(1):89–102. https://doi.org/10.1111/j.1467-8624.2006.00858.x.

    Article  PubMed  Google Scholar 

  13. Pai YC, Wening JD, Runtz EF, Iqbal K, Pavol MJ. Role of feedforward control of movement stability in reducing slip-related balance loss and falls among older adults. J Neurophysiol. 2003;90(2):755–62. https://doi.org/10.1152/jn.01118.2002.

    Article  PubMed  Google Scholar 

  14. Pai YC, Bhatt T, Yang F, Wang E. Perturbation training can reduce community-dwelling older adults' annual fall risk: a randomized controlled trial. J Gerontol A Biol Sci Med Sci. 2014;69(12):1586–94. https://doi.org/10.1093/gerona/glu087.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Schmidt RA, Lee TD. Motor control and learning : a behavioral emphasis. Champaign, IL: Human Kinetics; 2011.

    Google Scholar 

  16. Liu X, Bhatt T, Pai YC. Intensity and generalization of treadmill slip training: high or low, progressive increase or decrease? J Biomech. 2016;49(2):135–40. https://doi.org/10.1016/j.jbiomech.2015.06.004.

    Article  PubMed  Google Scholar 

  17. Jayaram G, Galea JM, Bastian AJ, Celnik P. Human locomotor adaptive learning is proportional to depression of cerebellar excitability. Cereb Cortex. 2011;21(8):1901–9. https://doi.org/10.1093/cercor/bhq263.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wang Y, Bhatt T, Liu X, Wang S, Lee A, Wang E, et al. Can treadmill-slip perturbation training reduce immediate risk of over-ground-slip induced fall among community-dwelling older adults? J Biomech. 2019;84:58–66. https://doi.org/10.1016/j.jbiomech.2018.12.017.

    Article  PubMed  Google Scholar 

  19. Wood T, editor. Measurement, statistics, and research design in physical education and exercise science: current issues and trends. New York: Psychology Press; 1997.

    Google Scholar 

  20. Kim A, Schweighofer N, Finley JM. Locomotor skill acquisition in virtual reality shows sustained transfer to the real world. J Neuroeng Rehabil. 2019;16(1):113. https://doi.org/10.1186/s12984-019-0584-y.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Srivastava S, Kao PC, Kim SH, Stegall P, Zanotto D, Higginson JS, et al. Assist-as-needed robot-aided gait training improves walking function in individuals following stroke. IEEE Trans Neural Syst Rehabil Eng. 2015;23(6):956–63. https://doi.org/10.1109/TNSRE.2014.2360822.

    Article  PubMed  Google Scholar 

  22. Pereira NM, Araya M, Scheicher ME. Effectiveness of a treadmill training programme in improving the postural balance on institutionalized older adults. J Aging Res. 2020;2020:4980618–7. https://doi.org/10.1155/2020/4980618.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Folstein MF, Folstein SE, McHugh PR. "mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.

    Article  CAS  Google Scholar 

  24. Podsiadlo D, Richardson S. The timed "up & go": a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39(2):142–8. https://doi.org/10.1111/j.1532-5415.1991.tb01616.x.

    Article  CAS  Google Scholar 

  25. Thompson PW, Taylor J, Oliver R, Fisher A. Quantitative ultrasound (QUS) of the heel predicts wrist and osteoporosis-related fractures in women age 45-75 years. J Clin Densitom. 1998;1(3):219–25. https://doi.org/10.1385/jcd:1:3:219.

    Article  CAS  PubMed  Google Scholar 

  26. Lee A, Bhatt T, Liu X, Wang Y, Wang S, Pai YC. Can treadmill slip-perturbation training reduce longer-term fall risk upon overground slip exposure? J Appl Biomech. 2020:1–9. https://doi.org/10.1123/jab.2019-0211.

  27. Pai YC, Yang F, Bhatt T, Wang E. Learning from laboratory-induced falling: long-term motor retention among older adults. Age (Dordr). 2014;36(3):9640. https://doi.org/10.1007/s11357-014-9640-5.

    Article  Google Scholar 

  28. Yang F, Bhatt T, Pai YC. Generalization of treadmill-slip training to prevent a fall following a sudden (novel) slip in over-ground walking. J Biomech. 2013;46(1):63–9. https://doi.org/10.1016/j.jbiomech.2012.10.002.

    Article  PubMed  Google Scholar 

  29. Yang F, Pai YC. Automatic recognition of falls in gait-slip training: harness load cell based criteria. J Biomech. 2011;44(12):2243–9. https://doi.org/10.1016/j.jbiomech.2011.05.039.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pai Y-C, Patton JL. Center of mass velocity-position predictions for balance control. J Biomech. 1997;30(4):347–54.

    Article  CAS  Google Scholar 

  31. Pai YC, Iqbal K. Simulated movement termination for balance recovery: can movement strategies be sought to maintain stability in the presence of slipping or forced sliding? J Biomech. 1999;32(8):779–86. https://doi.org/10.1016/s0021-9290(99)00074-3.

    Article  CAS  PubMed  Google Scholar 

  32. Pai YC, Patton J. Center of mass velocity-position predictions for balance control. J Biomech. 1997;30(4):347–54. https://doi.org/10.1016/s0021-9290(96)00165-0.

    Article  CAS  PubMed  Google Scholar 

  33. Yang F, Anderson FC, Pai YC. Predicted threshold against backward balance loss in gait. J Biomech. 2007;40(4):804–11. https://doi.org/10.1016/j.jbiomech.2006.03.015.

    Article  PubMed  Google Scholar 

  34. Yang F, Passariello F, Pai YC. Determination of instantaneous stability against backward balance loss: two computational approaches. J Biomech. 2008;41(8):1818–22. https://doi.org/10.1016/j.jbiomech.2008.02.003.

    Article  PubMed  PubMed Central  Google Scholar 

  35. de Leva P. Adjustments to Zatsiorsky-Seluyanov's segment inertia parameters. J Biomech. 1996;29(9):1223–30. https://doi.org/10.1016/0021-9290(95)00178-6.

    Article  PubMed  Google Scholar 

  36. Powell LE, Myers AM. The activities-specific balance confidence (ABC) scale. J Gerontol A Biol Sci Med Sci. 1995;50A(1):M28–34. https://doi.org/10.1093/gerona/50a.1.m28.

    Article  CAS  PubMed  Google Scholar 

  37. Lee A, Bhatt T, Smith-Ray RL, Wang E, Pai YC. Gait speed and dynamic stability decline accelerates only in late life: a cross-sectional study in community-dwelling older adults. J Geriatr Phys Ther. 2019;42(2):73–80. https://doi.org/10.1519/JPT.0000000000000171.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jung H-W, Jang I-Y, Lee CK, Yu SS, Hwang JK, Jeon C, et al. Usual gait speed is associated with frailty status, institutionalization, and mortality in community-dwelling rural older adults: a longitudinal analysis of the aging study of Pyeongchang rural area. Clin Interv Aging. 2018;13:1079–89. https://doi.org/10.2147/CIA.S166863.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Castell M-V, Sánchez M, Julián R, Queipo R, Martín S, Otero Á. Frailty prevalence and slow walking speed in persons age 65 and older: implications for primary care. BMC Fam Pract. 2013;14:86. https://doi.org/10.1186/1471-2296-14-86.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lee A, Bhatt T, Pai YC. Generalization of treadmill perturbation to overground slip during gait: effect of different perturbation distances on slip recovery. J Biomech. 2016;49(2):149–54. https://doi.org/10.1016/j.jbiomech.2015.11.021.

    Article  PubMed  Google Scholar 

  41. McCrum C, Karamanidis K, Grevendonk L, Zijlstra W, Meijer K. Older adults demonstrate interlimb transfer of reactive gait adaptations to repeated unpredictable gait perturbations. Geroscience. 2020;42(1):39–49. https://doi.org/10.1007/s11357-019-00130-x.

    Article  PubMed  Google Scholar 

  42. Bhatt T, Pai YC. Immediate and latent interlimb transfer of gait stability adaptation following repeated exposure to slips. J Mot Behav. 2008;40(5):380–90. https://doi.org/10.3200/JMBR.40.5.380-390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang Y, Wang S, Lee A, Pai YC, Bhatt T. Treadmill-gait slip training in community-dwelling older adults: mechanisms of immediate adaptation for a progressive ascending-mixed-intensity protocol. Exp Brain Res. 2019;237(9):2305–17. https://doi.org/10.1007/s00221-019-05582-3.

    Article  PubMed  Google Scholar 

  44. Wang S, Liu X, Lee A, Pai YC. Can recovery foot placement affect older adults' slip-fall severity? Ann Biomed Eng. 2017;45(8):1941–8. https://doi.org/10.1007/s10439-017-1834-4.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Krakauer JW, Shadmehr R. Consolidation of motor memory. Trends Neurosci. 2006;29(1):58–64. https://doi.org/10.1016/j.tins.2005.10.003.

    Article  CAS  PubMed  Google Scholar 

  46. Hornby TG, Straube DS, Kinnaird CR, Holleran CL, Echauz AJ, Rodriguez KS, et al. Importance of specificity, amount, and intensity of locomotor training to improve ambulatory function in patients poststroke. Top Stroke Rehabil. 2011;18(4):293–307. https://doi.org/10.1310/tsr1804-293.

    Article  PubMed  Google Scholar 

  47. Moore JL, Roth EJ, Killian C, Hornby TG. Locomotor training improves daily stepping activity and gait efficiency in individuals poststroke who have reached a "plateau" in recovery. Stroke. 2010;41(1):129–35. https://doi.org/10.1161/STROKEAHA.109.563247.

    Article  PubMed  Google Scholar 

  48. Rose DK, Nadeau SE, Wu SS, Tilson JK, Dobkin BH, Pei Q, et al. Locomotor training and strength and balance exercises for walking recovery after stroke: response to number of training sessions. Phys Ther. 2017;97(11):1066–74. https://doi.org/10.1093/ptj/pzx079.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Konig M, Epro G, Seeley J, Catala-Lehnen P, Potthast W, Karamanidis K. Retention of improvement in gait stability over 14weeks due to trip-perturbation training is dependent on perturbation dose. J Biomech. 2019;84:243–6. https://doi.org/10.1016/j.jbiomech.2018.12.011.

    Article  PubMed  Google Scholar 

  50. Bhatt T, Pai YC. Prevention of slip-related backward balance loss: the effect of session intensity and frequency on long-term retention. Arch Phys Med Rehabil. 2009;90(1):34–42. https://doi.org/10.1016/j.apmr.2008.06.021.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Marigold DS, Patla AE. Strategies for dynamic stability during locomotion on a slippery surface: effects of prior experience and knowledge. J Neurophysiol. 2002;88(1):339–53. https://doi.org/10.1152/jn.00691.2001.

    Article  PubMed  Google Scholar 

  52. Adkin AL, Frank JS, Carpenter MG, Peysar GW. Postural control is scaled to level of postural threat. Gait Posture. 2000;12(2):87–93. https://doi.org/10.1016/s0966-6362(00)00057-6.

    Article  CAS  PubMed  Google Scholar 

  53. Liu X, Bhatt T, Wang S, Yang F, Pai YC. Retention of the "first-trial effect" in gait-slip among community-living older adults. Geroscience. 2017;39(1):93–102. https://doi.org/10.1007/s11357-017-9963-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Smith RA. The effect of unequal group size on Tukey's HSD procedure. Psychometrika. 1971;36:31–4.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Feng Yang for assisting in data collection and processing and Ms. Julia Lerman for language editing.

Funding

This work was supported by the National Institutes of Health (R01-AG029616 to YC (Clive) Pai and R01-AG044364 to Tanvi Bhatt and YC (Clive) Pai).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Chung Pai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Bhatt, T., Wang, Y. et al. The retention of fall-resisting behavior derived from treadmill slip-perturbation training in community-dwelling older adults. GeroScience 43, 913–926 (2021). https://doi.org/10.1007/s11357-020-00270-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-020-00270-5

Keywords

Navigation