Skip to main content
Log in

Adsorption and Reaction of Trimethyl and Triethyl Phosphite on Fe3O4 by Density Functional Theory

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

First-principle density functional theory (DFT) calculations are used to calculate the most stable structures and heats of adsorption of trimethyl and triethyl phosphites on an Fe3O4 surface in order to understand their behavior as lubricant additives. Previous surface science studies of phosphate and phosphite esters on iron oxide surface have shown that they react by sequentially desorbing the corresponding alcohol and aldehyde in equimolar amounts. This implies that the reactions are limited by the rate of alkoxide removal, followed by a rapid reaction to form the alcohol and aldehyde. It is found that the trialkyl phosphites, dialkyl phosphite, and monoalkyl phosphite all adsorb with the phosphorus atoms bound to surface Fe3+ ions, with the alkoxy groups close to parallel to the surface. The heat of adsorption increases as the alkoxide groups are removed. The postulate that the rate-limiting step in the decomposition of the phosphate esters is the sequential removal of the alkoxide group is tested by plotting the experimental activation energy obtained from temperature-programed desorption experiments versus the corresponding heats of adsorption calculated by DFT. A linear dependence shows that the reaction obeys the so-called Evans–Polanyi relation, thereby confirming the above postulate. The slope of the plot is close to unity and thus implies that the structure of the transition state of the reaction resembles the product.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mang, T., Dresel, W.: Lubricants and lubrications. Wiley-VCH, Weinheim/New York/Chichester (2001)

    Google Scholar 

  2. Gauthier, A., Montes, H., Georges, J.M.: Boundary lubrication with tricresylphosphate (TCP). Importance of corrosive wear. A S L E Trans. 25, 445–455 (1982)

    Article  CAS  Google Scholar 

  3. Yamamoto, Y., Hirano, F.: Effect of different phosphate esters on frictional characteristics. Tribol. Int. 13, 165–169 (1980)

    Article  CAS  Google Scholar 

  4. Yamamoto, Y., Hirano, F.: The effect of the addition of phosphate esters to paraffinic base oils on their lubricating performance under sliding conditions. Wear 78, 285–296 (1982)

    Article  CAS  Google Scholar 

  5. Placek, D.G., Shankwalkar, S.G.: Phosphate ester surface treatment for reduced wear and corrosion protection. Wear 173, 207–217 (1994)

    Article  CAS  Google Scholar 

  6. Forbes, E.S.: The load-carrying action of organo-sulphur compounds—a review. Wear 15, 87–96 (1970)

    Article  CAS  Google Scholar 

  7. Najman, M.N., Kasrai, M., Bancroft, G.M., Miller, A.: Study of the chemistry of films generated from phosphate ester additives on 52100 steel using x-ray absorption spectroscopy. Tribol. Lett. 13, 209–218 (2002)

    Article  CAS  Google Scholar 

  8. Ren, D., Gellman, A.: Initial steps in the surface chemistry of vapor phase lubrication by organophosphorus compounds. Tribol. Lett. 6, 191–194 (1999)

    Article  CAS  Google Scholar 

  9. Ren, D., Gellman, A.J.: The carbon deposition mechanism in vapor phase lubrication. Tribol. Trans. 43, 480–488 (2000)

    Article  CAS  Google Scholar 

  10. Ren, D., Gellman, A.J.: Reaction mechanisms in organophosphate vapor phase lubrication of metal surfaces. Tribol. Int. 34, 353–365 (2001)

    Article  CAS  Google Scholar 

  11. Ren, D., Zhou, G., Gellman, A.J.: The decomposition mechanism of trimethylphosphite on Ni(111). Surf. Sci. 475, 61–72 (2001)

    Article  CAS  Google Scholar 

  12. Sung, D., Gellman, A.J.: The surface chemistry of alkyl and arylphosphate vapor phase lubricants on Fe foil. Tribol. Int. 35, 579–590 (2002)

    Article  CAS  Google Scholar 

  13. Sung, D., Gellman, A.J.: Thermal decomposition of tricresylphosphate isomers on Fe. Tribol. Lett. 13, 9–14 (2002)

    Article  CAS  Google Scholar 

  14. Gao, F., Furlong, O., Kotvis, P.V., Tysoe, W.T.: Reaction of tributyl phosphite with oxidized iron: surface and tribological chemistry. Langmuir 20, 7557–7568 (2004)

    Article  CAS  Google Scholar 

  15. Gao, F., Kotvis, P.V., Stacchiola, D., Tysoe, W.T.: Reaction of tributyl phosphate with oxidized iron: surface chemistry and tribological significance. Tribol. Lett. 18, 377–384 (2005)

    Article  CAS  Google Scholar 

  16. Rana, R., Tysoe, W.: Tribochemical mechanisms of trimethyl and triethyl phosphite on oxidized iron in ultrahigh vacuum. Tribol. Lett. 67, 93 (2019)

    Article  Google Scholar 

  17. Han, Y.-K., Yoo, J., Yim, T.: Why is tris(trimethylsilyl) phosphite effective as an additive for high-voltage lithium-ion batteries? J. Mater. Chem. A 3, 10900–10909 (2015)

    Article  CAS  Google Scholar 

  18. Redhead, P.A.: Thermal desorption of gases. Vacuum 12, 203–211 (1962)

    Article  CAS  Google Scholar 

  19. De Barros-Bouchet, M.I., Righi, M.C., Philippon, D., Mambingo-Doumbe, S., Le-Mogne, T., Martin, J.M., et al.: Tribochemistry of phosphorus additives: experiments and first-principles calculations. RSC Adv. 5, 49270–49279 (2015)

    Article  Google Scholar 

  20. Righi, M.C., Loehlé, S., de Barros Bouchet, M.I., Philippon, D., Martin, J.M.: Trimethyl-phosphite dissociative adsorption on iron by combined first-principle calculations and XPS experiments. RSC Adv. 5, 101162–101168 (2015)

    Article  CAS  Google Scholar 

  21. Evans, M.G., Polanyi, M.: Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans. Faraday Soc. 31, 875–894 (1935)

    Article  CAS  Google Scholar 

  22. Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999)

    Article  CAS  Google Scholar 

  23. Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994)

    Article  Google Scholar 

  24. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  CAS  Google Scholar 

  25. Kresse, G., Hafner, J.: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993)

    Article  CAS  Google Scholar 

  26. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)

    Article  CAS  Google Scholar 

  27. Kresse, G., Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996)

    Article  CAS  Google Scholar 

  28. Santos-Carballal, D., Roldan, A., Grau-Crespo, R., de Leeuw, N.H.: A DFT study of the structures, stabilities and redox behaviour of the major surfaces of magnetite Fe3O4. Phys. Chem. Chem. Phys. 16, 21082–21097 (2014)

    Article  CAS  Google Scholar 

  29. Tang, W., Sanville, E., Henkelman, G.: A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 21, 084204 (2009)

    Article  CAS  Google Scholar 

  30. Persson, K.: Materials Data on Fe3O4 (SG:227) by Materials Project. Place (2015)

  31. Belyakov, A.V., Dalhus, B., Haaland, A., Shorokhov, D.J., Volden, H.V.: Molecular structure and conformational preferences of trimethylphosphite, P(OCH3)3, as a free molecule and as a ligand in d-block metal complexes. J. Chem. Soc. Dalton Trans. 19, 3756–3762 (2002)

    Article  Google Scholar 

  32. Bader, R.F.W.: Atoms in molecules: a quantum theory. Clarendon, Oxford (2003)

    Google Scholar 

  33. van Santen, R.A., Neurock, M., Shetty, S.G.: Reactivity theory of transition-metal surfaces: a Brønsted−Evans−Polanyi linear activation energy−free-energy analysis. Chem. Rev. 110, 2005–2048 (2010)

    Article  Google Scholar 

  34. Cheng, J., Hu, P., Ellis, P., French, S., Kelly, G., Lok, C.M.: Brønsted−Evans−Polanyi relation of multistep reactions and volcano curve in heterogeneous catalysis. J. Phys. Chem. C 112, 1308–1311 (2008)

    Article  CAS  Google Scholar 

  35. Gosvami, N.N., Bares, J.A., Mangolini, F., Konicek, A.R., Yablon, D.G., Carpick, R.W.: Mechanisms of antiwear tribofilm growth revealed in situ by single-asperity sliding contacts. Science 348, 102–106 (2015)

    Article  CAS  Google Scholar 

  36. Zhang, J., Spikes, H.: On the mechanism of ZDDP antiwear film formation. Tribol. Lett. 63, 1–15 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Civil, Mechanical and Manufacturing Innovation (CMMI) Division of the National Science Foundation under Grant Number 1634340 for support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfred T. Tysoe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, R., Hopper, N. & Tysoe, W.T. Adsorption and Reaction of Trimethyl and Triethyl Phosphite on Fe3O4 by Density Functional Theory. Tribol Lett 68, 105 (2020). https://doi.org/10.1007/s11249-020-01343-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-020-01343-4

Keywords

Navigation