Skip to main content

Advertisement

Log in

Pressure-induced structural transition and metallization in MnSe2

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The high-pressure behavior of manganese diselenide MnSe2 was investigated by synchrotron angle-dispersive X-ray diffraction (ADXRD) and infrared reflection spectroscopy equipped with a diamond-anvil cell. It was found that MnSe2 with a pyrite-type structure undergoes a transformation into a disordered intermediate phase at ~ 12.5 GPa, with a ground state composed of an arsenopyrite-type structure, as confirmed by laser-heating treatment. The pyrite to arsenopyrite phase transition was found to be coupled to a large collapse in the unit-cell volume (∆V ~ 19%) and an electronic transition from a high-spin to low-spin state for manganese cations (Mn2+). With a fixed value for the pressure derivation of the bulk modulus K' = 4, fitting of the pressure–volume data to a second-order Birch–Murnaghan equation of state yielded isothermal bulk modulus values of K0 = 56.1(9) GPa and K0 = 93.1(4) GPa for the pyrite-type and arsenopyrite-type phases, respectively. The measured infrared reflectivity (Rsd) for MnSe2 showed a drastic increase at pressures between 13 and 20 GPa, but became insensitive to pressure under further compression, implying a pressure-induced transition from an insulator to metallic state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bargeron C, Avinor M, Drickamer H (1971) Effect of pressure on the spin state of iron (II) in manganese (IV) sulfide. Inorg Chem 10:1338–1339

    Google Scholar 

  • Bither TA, Bouchard R, Cloud W, Donohue P, Siemons W (1968) Transition metal pyrite dichalcogenides. High-pressure synthesis and correlation of properties. Inorg Chem 7:2208–2220

    Google Scholar 

  • Chandra U, Zuburtikudis I, Parthasarathy G, Sreedhar B (2014) High-pressure electrical resistivity and Mössbauer spectroscopic studies on narrow band Co0. 8Fe0. 2S2 nanoparticles up to 8 GPa. Phase Transit 87:477–490

    Google Scholar 

  • Chattopadhyay T, Von Schnering H (1985) High pressure X-ray diffraction study on p-FeS2, m-FeS2 and MnS2 to 340 kbar: a possible high spin-low spin transition in MnS2. J Phys Chem Solids 46:113–116

    Google Scholar 

  • Chattopadhyay T, von Schnering H, Grosshans W (1986) High pressure x-ray diffraction study on the structural phase transition in MnS2. Physica B + C 139:305–307

    Google Scholar 

  • Chattopadhyay T, Rossat-Mignod J, Fjellvåg H (1987) Magnetic ordering in MnSe2. Solid State Commun 63:65–67

    Google Scholar 

  • Cohen RE, Mazin I, Isaak DG (1997) Magnetic collapse in transition metal oxides at high pressure: implications for the earth. Science 275:654–657

    Google Scholar 

  • Durkee D, Smith D, Torchio R, Petitgirard S, Briggs R, Kantor I, Evans SR, Chatterji T, Irifune T, Pascarelli S (2019) Electronic origins of the giant volume collapse in the pyrite mineral MnS2. J Solid State Chem 269:540–546

    Google Scholar 

  • Faber MS, Lukowski MA, Ding Q, Kaiser NS, Jin S (2014) Earth-abundant metal pyrites (FeS2, CoS2, NiS2, and their alloys) for highly efficient hydrogen evolution and polysulfide reduction electrocatalysis. J Phys Chem C 118:21347–21356

    Google Scholar 

  • Fan DW, Ma MN, Zhou WG, Wei SY, Chen ZQ, Xie HS (2011) X-ray diffraction study of arsenopyrite at high pressure. Phys Chem Miner 38:95–99

    Google Scholar 

  • Feng ZY, Yang Y, Zhang JM (2018) The structural, electronic and magnetic properties of CoS2 under pressure. Solid State Commun 273:60–65

    Google Scholar 

  • Fjellvåg H, Kjekshus A, Chattopadhyay T, Hochheimer H, Hönle W, Von Schnering H (1985) Pressure induced phase transition in MnTe2. Phys Lett A 112:411–413

    Google Scholar 

  • Fjellvåg H, Grosshans W, Hönle W, Kjekshus A (1995) Pressure induced phase transition in MnTe2 studied by synchrotron radiation—comparison with RuTe2. J Magn Magn Mater 145:118–124

    Google Scholar 

  • Gudelli VK, Kanchana V, Appalakondaiah S, Vaitheeswaran G, Valsakumar M (2013) Phase stability and thermoelectric properties of the mineral FeS2: an ab initio study. J Phys Chem C 117:21120–21131

    Google Scholar 

  • Hastings J, Elliott N, Corliss L (1959) Antiferromagnetic structures of MnS2, MnSe2, and MnTe2. Phys Rev 115:13

    Google Scholar 

  • Honig J, Spałek J (1998) Electronic properties of NiS2-xSex single crystals: from magnetic Mott−Hubbard insulators to normal metals. Chem Mater 10:2910–2929

    Google Scholar 

  • Houari A, Blöchl PE (2018) Density functional study of half-metallicity and spin polarization in Fe1− x Tx S2 with T= Mn, Ni. J Phys: Condens Matter 30:305501

    Google Scholar 

  • Huang S, Wu X, Qin S (2018) Ultrahigh-pressure phase transitions in FeS2 and FeO2: implications for super-earths' deep interior. J Geophys Res Solid Earth 123:277–284

    Google Scholar 

  • Kakihana M, Matsuda TD, Higashinaka R, Aoki Y, Nakamura A, Aoki D, Harima H, Hedo M, Nakama T, Ōnuki Y (2018) Superconducting and fermi surface properties of pyrite-type compounds CuS2 and CuSe2. J Phys Soc Jpn 88:014702

    Google Scholar 

  • Kan M, Adhikari S, Sun Q (2014) Ferromagnetism in MnX2 (X = S, Se) monolayers. Phys Chem Chem Phys 16:4990–4994

    Google Scholar 

  • Kimber SA, Salamat A, Evans SR, Jeschke HO, Muthukumar K, Tomić M, Salvat-Pujol F, Valentí R, Kaisheva MV, Zizak I (2014) Giant pressure-induced volume collapse in the pyrite mineral MnS2. Proc Natl Acad Sci 111:5106–5110

    Google Scholar 

  • Kobayashi M (2001) Infrared spectroscopy of pressure-induced metallization in semiconductors. Physica Status Solidi (b) 223:55–64

    Google Scholar 

  • Lauer S, Trautwein A, Harris F (1984) Electronic-structure calculations, photoelectron spectra, optical spectra, and Mössbauer parameters for the pyrites MS2 (M= Fe Co, Ni, Cu, Zn). Phys Rev B 29:6774

    Google Scholar 

  • Li Q, Zhang H, Lin C, Tian F, Smith JS, Park C, Liu B, Shen G (2017) Pressure-induced phase transitions and insulator-metal transitions in VO2 nanoparticles. J Alloys Compd 709:260–266

    Google Scholar 

  • Lin JF, Speziale S, Mao Z, Marquardt H (2013) Effects of the electronic spin transitions of iron in lower mantle minerals: implications for deep mantle geophysics and geochemistry. Rev Geophys 51:244–275

    Google Scholar 

  • Mao H, Xu JA, Bell P (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res Solid Earth 91:4673–4676

    Google Scholar 

  • Mita Y, Izaki D, Kobayashi M, Endo S (2005) Pressure-induced metallization of MnO. Phys Rev B 71:100101

    Google Scholar 

  • Mita Y, Ishida Y, Kobayashi M, Endo S (2008) Infrared reflection of MnTe2 under high pressure. Acta Physica Pol Ser A Gen Phys 113:617–620

    Google Scholar 

  • Nishio-Hamane D, Yagi T (2009) Equations of state for postperovskite phases in the MgSiO3–FeSiO3–FeAlO3 system. Phys Earth Planet Inter 175:145–150

    Google Scholar 

  • Ogawa S (1979) Magnetic properties of 3d transition-metal dichalcogenides with the pyrite structure. J Appl Phys 50:2308–2311

    Google Scholar 

  • Okamura H, Ikemoto Y, Moriwaki T, Nanba T (2017) Infrared spectroscopy techniques for studying the electronic structures of materials under high pressure. Jpn J Appl Phys 56:05FA11

    Google Scholar 

  • Pathak M, Tamang D, Kandasamy M, Chakraborty B, Sekhar Rout C (2020) A comparative experimental and theoretical investigation on energy storage performance of CoSe2, NiSe2 and MnSe2 nanostructures. Appl Mater Today 19:100568

    Google Scholar 

  • Persson K, Ceder G, Morgan D (2006) Spin transitions in the FexMn1− xS2 system. Phys Rev B 73:115201

    Google Scholar 

  • Perucchi A, Marini C, Valentini M, Postorino P, Sopracase R, Dore P, Hansmann P, Jepsen O, Sangiovanni G, Toschi A (2009) Pressure and alloying effects on the metal to insulator transition in NiS2− x Sex studied by infrared spectroscopy. Phys Rev B 80:073101

    Google Scholar 

  • Prescher C, Prakapenka VB (2015) DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. HPR 35:223–230

    Google Scholar 

  • Rabia K, Baldassarre L, Deisenhofer J, Tsurkan V, Kuntscher CA (2014) Evolution of the optical properties of chromium spinels CdCr2O4, HgCr2S4, and ZnCr2Se4 under high pressure. Phys Rev B 89:125107

    Google Scholar 

  • Reich M, Deditius A, Chryssoulis S, Li JW, Ma CQ, Parada MA, Barra F, Mittermayr F (2013) Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: a SIMS/EMPA trace element study. Geochim Cosmochim Acta 104:42–62

    Google Scholar 

  • Sidorov V, Krasnorussky V, Petrova AE, Utyuzh A, Yuhasz W, Lograsso TA, Thompson J, Stishov SM (2011) High-pressure study of the phase transition in the itinerant ferromagnet CoS2. Phys Rev B 83:060412

    Google Scholar 

  • Sidorov VA, Guo J, Sun L, Brazhkin VV (2018) Thermodynamics of a magnetic transition in MnS2 at high pressures. JETP Lett 107:311–314

    Google Scholar 

  • Temmerman W, Durham P, Vaughan D (1993) The electronic structures of the pyrite-type disulphides (MS2, where M= Mn, Fe Co, Ni, Cu, Zn) and the bulk properties of pyrite from local density approximation (LDA) band structure calculations. Phys Chem Miner 20:248–254

    Google Scholar 

  • Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213

    Google Scholar 

  • Tokuda M, Yoshiasa A, Mashimo T, Arima H, Hongu H, Tobase T, Nakatsuka A, Sugiyama K (2019) Crystal structure refinement of MnTe2, MnSe2, and MnS2: cation–anion and anion–anion bonding distances in pyrite-type structures. Zeitschrift für Kristallographie-Cryst Mater 234:371–377

    Google Scholar 

  • Tossell J, Vaughan D, Burdett J (1981) Pyrite, marcasite, and arsenopyrite type minerals: crystal chemical and structural principles. Phys Chem Miner 7:177–184

    Google Scholar 

  • Ueda H, Nohara M, Kitazawa K, Takagi H, Fujimori A, Mizokawa T, Yagi T (2002) Copper pyrites CuS2 and CuSe2 as anion conductors. Phys Rev B 65:155104

    Google Scholar 

  • Vulliet P, Sanchez J, Braithwaite D, Amanowicz M, Malaman B (2001) Pressure-induced metallization and collapse of the antiferromagnetic state of MnTe2. Phys Rev B 63:184403

    Google Scholar 

  • Wang L, Chen L, Luo T, Bao K, Qian Y (2006) A facile method to the cube-like MnSe2 microcrystallines via a hydrothermal process. Solid State Commun 138:72–75

    Google Scholar 

  • Wang Y, Bai L, Wen T, Yang L, Gou H, Xiao Y, Chow P, Pravica M, Yang W, Zhao Y (2016) Giant pressure-driven lattice collapse coupled with intermetallic bonding and spin-state transition in manganese chalcogenides. Angew Chem Int Ed 55:10350–10353

    Google Scholar 

  • Wu MH, Chou WJ, Huang JS, Putungan DB, Lin SH (2019) First-principles investigation of the hydrogen evolution reaction on different surfaces of pyrites MnS2, FeS2, CoS2, NiS2. PCCP 21:21561–21567

    Google Scholar 

  • Yang J, Tong X, Lin JF, Okuchi T, Tomioka N (2015) Elasticity of ferropericlase across the spin crossover in the Earth’s lower mantle. Sci Rep 5:1–9

    Google Scholar 

  • Yonggang GY, Ross NL (2010) Prediction of high-pressure polymorphism in NiS2 at megabar pressures. J Phys Condens Matter 22:235401

    Google Scholar 

  • Yu L, Yang JF, Lou XW (2016) Formation of CoS2 nanobubble hollow prisms for highly reversible lithium storage. Angew Chem Int Ed 55:13422–13426

    Google Scholar 

  • Zhang H, Li Q, Wang F, Liu R, Mao Y, Liu Z, Li X, Yang K, Cui T, Liu B (2018) Pressure-induced reversible phase transitions in a new metastable phase of vanadium dioxide. J Phys Chem C 123:955–962

    Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. T. Tsuchiya for his editorial handling and valued suggestions. Constructive comments and suggestions of two anonymous reviewers greatly helped to improve the manuscript and are sincerely acknowledged. High-pressure XRD experiments were carried out at the BL15U1 beamline of Shanghai Synchrotron Radiation Facility (SSRF) and the 4W2 High Pressure Beamline of Beijing Synchrotron Radiation Facility (BSRF), respectively. This research was financially supported by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB18000000) and the National Natural Science Foundation of China (Grants No. 41874107, 41574079, 41174072). This is contribution No. IS-2903 from GIGCAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maoshuang Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Wang, X., Wang, S. et al. Pressure-induced structural transition and metallization in MnSe2. Phys Chem Minerals 47, 41 (2020). https://doi.org/10.1007/s00269-020-01111-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00269-020-01111-9

Keywords

Navigation