Skip to main content
Log in

High-performance SERS detection of pesticides using BiOCl-BiOBr@Pt/Au hybrid nanostructures on styrofoams as 3D functional substrate

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A 3D flexible domestic waste styrofoam is reported as a surface enhanced Raman scattering (SERS) substrate loaded with BiOCl-BiOBr@Pt/Au semiconductor-plasmonic composites. The hydrothermally prepared BiOCl-BiOBr nanocomposite is thoroughly characterized for its crystal structure using X-Ray diffraction, morphology through scanning electron microscopy, and electronic states of the elements using X-ray photoelectron spectroscopy. The alpha cypermethrin (ACM) is chosen as a model pesticide analyte for SERS investigation. The BiOCl-BiOBr@Pt/Au loaded foam substrate exhibited a high enhancement factor (106) and low limit of detection (10−10 M) upon SERS investigation. The unique architecture of the semiconductor-plasmonic composite enables an efficient charge transfer capability and plasmonic hotspots which aids in the enhancement of target analytes. In order to better demonstrate the versatility towards other pesticides, SERS detection of glyphosate and paraquat pesticides are also performed using the fabricated SERS substrate. The stability of the substrate has been investigated in detail for 30 days and the substrate was highly stable. The BiOCl-BiOBr@Pt/Au-based foam substrate also performed well in rapid real-time sensing of alpha cypermethrin on the kiwi fruit exocarp at lower level concentrations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Eddleston M, Karalliedde L, Buckley N, Fernando R, Hutchinson G, Isbister G, Konradsen F, Murray D, Piola JC, Senanayake N, Sheriff R, Singh S, Siwach SB, Smit L (2002) Pesticide poisoning in the developing world—a minimum pesticides list. Lancet 360(9340):1163–1167. https://doi.org/10.1016/S0140-6736(02)11204-9

    Article  PubMed  Google Scholar 

  2. Pereira JL, Antunes SC, Castro BB, Marques CR, Gonçalves AM, Gonçalves F, Pereira R (2009) Toxicity evaluation of three pesticides on non-target aquatic and soil organisms: commercial formulation versus active ingredient. Ecotoxicology 18(4):455–463. https://doi.org/10.1007/s10646-009-0300-y

    Article  CAS  PubMed  Google Scholar 

  3. Amweg EL, Weston DP, Ureda NM (2005) Use and toxicity of pyrethroid pesticides in the Central Valley, California, USA. Environ Toxicol Chem 24(4):966–972. https://doi.org/10.1897/04-146R1.1

    Article  CAS  PubMed  Google Scholar 

  4. Saillenfait A-M, Ndiaye D, Sabaté J-P (2015) Pyrethroids: exposure and health effects–an update. Int J Hyg Environ Health 218(3):281–292. https://doi.org/10.1016/j.ijheh.2015.01.002

    Article  CAS  PubMed  Google Scholar 

  5. Ramesh A, Ravi PE (2004) Electron ionization gas chromatography–mass spectrometric determination of residues of thirteen pyrethroid insecticides in whole blood. J Chromatogr B 802(2):371–376. https://doi.org/10.1016/j.jchromb.2003.12.016

    Article  CAS  Google Scholar 

  6. Li X, Yang T, Song Y, Zhu J, Wang D, Li W (2019) Surface-enhanced Raman spectroscopy (SERS)-based immunochromatographic assay (ICA) for the simultaneous detection of two pyrethroid pesticides. Sensors Actuators B Chem 283:230–238. https://doi.org/10.1016/j.snb.2018.11.112

    Article  CAS  Google Scholar 

  7. Pang S, Yang T, He L (2016) Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides. Trends Anal Chem 85:73–82. https://doi.org/10.1016/j.trac.2016.06.017

    Article  CAS  Google Scholar 

  8. Alvarez-Puebla RA, Liz-Marzán LM (2012) SERS detection of small inorganic molecules and ions. Angew Chem Int Ed 51(45):11214–11223. https://doi.org/10.1002/anie.201204438

    Article  CAS  Google Scholar 

  9. Khan SB, Alamry KA, Marwani HM, Asiri AM, Rahman MM (2013) Synthesis and environmental applications of cellulose/ZrO2 nanohybrid as a selective adsorbent for nickel ion. Compos B Eng 50:253–258. https://doi.org/10.1016/j.compositesb.2013.02.009

    Article  CAS  Google Scholar 

  10. Rahman MM, Khan SB, Asiri AM, Marwani HM, Qusti AH (2013) Selective detection of toxic Pb (II) ions based on wet-chemically prepared nanosheets integrated CuO–ZnO nanocomposites. Compos B Eng 54:215–223. https://doi.org/10.1016/j.compositesb.2013.05.018

    Article  CAS  Google Scholar 

  11. Khan A, Asiri AM, Khan AAP, Rub MA, Azum N, Rahman MM, Al-Youbi AO, Qusti AH (2014) Dual nature, self oxidized poly (o-anisidine) functionalized multiwall carbon nanotubes composite: preparation, thermal and electrical studies. Compos B Eng 58:451–456. https://doi.org/10.1016/j.compositesb.2013.10.059

    Article  CAS  Google Scholar 

  12. Ahmed J, Rahman MM, Siddiquey IA, Asiri AM, Hasnat MA (2018) Efficient hydroquinone sensor based on zinc, strontium and nickel based ternary metal oxide (TMO) composites by differential pulse voltammetry. Sensors Actuators B Chem 256:383–392. https://doi.org/10.1016/j.snb.2017.10.076

    Article  CAS  Google Scholar 

  13. Balaji R, Renganathan V, Chen S-M, Singh V (2020) Ingenious design and development of recyclable 2D BiOCl nanotiles attached tri-functional robust strips for high performance selective electrochemical sensing, SERS and heterogenous dip catalysis. Chem Eng J 385:123974. https://doi.org/10.1016/j.cej.2019.123974

    Article  CAS  Google Scholar 

  14. Awual MR, Hasan MM, Asiri AM, Rahman MM (2019) Cleaning the arsenic (V) contaminated water for safe-guarding the public health using novel composite material. Compos B Eng 171:294–301. https://doi.org/10.1016/j.compositesb.2019.05.078

    Article  CAS  Google Scholar 

  15. Karim MR, Alam M, Aijaz M, Asiri AM, Dar M, Rahman MM (2019) Fabrication of 1, 4-dioxane sensor based on microwave assisted PAni-SiO2 nanocomposites. Talanta 193:64–69. https://doi.org/10.1016/j.talanta.2018.09.100

    Article  CAS  PubMed  Google Scholar 

  16. Katowah DF, Rahman MM, Hussein MA, Sobahi T, Gabal M, Alam M, Asiri AM (2019) Ternary nanocomposite based poly (pyrrole-co-O-toluidine), cobalt ferrite and decorated chitosan as a selective Co2+ cationic sensor. Compos B Eng 175:107175. https://doi.org/10.1016/j.compositesb.2019.107175

    Article  CAS  Google Scholar 

  17. Ahmed J, Rahman MM, Siddiquey IA, Asiri AM, Hasnat MA (2017) Efficient Bisphenol-A detection based on the ternary metal oxide (TMO) composite by electrochemical approaches. Electrochim Acta 246:597–605. https://doi.org/10.1016/j.electacta.2017.06.072

    Article  CAS  Google Scholar 

  18. Zhang Y, Liu S, Wang L, Qin X, Tian J, Lu W, Chang G, Sun X (2012) One-pot green synthesis of Ag nanoparticles-graphene nanocomposites and their applications in SERS, H2O2, and glucose sensing. RSC Adv 2(2):538–545. https://doi.org/10.1039/c1ra00641j

    Article  CAS  Google Scholar 

  19. Alam MK, Rahman MM, Elzwawy A, Torati SR, Islam MS, Todo M, Asiri AM, Kim D, Kim C (2017) Highly sensitive and selective detection of Bis-phenol A based on hydroxyapatite decorated reduced graphene oxide nanocomposites. Electrochim Acta 241:353–361. https://doi.org/10.1016/j.electacta.2017.04.135

    Article  CAS  Google Scholar 

  20. Wang L, Li H, Tian J, Sun X (2010) Monodisperse, micrometer-scale, highly crystalline, nanotextured Ag dendrites: rapid, large-scale, wet-chemical synthesis and their application as SERS substrates. ACS Appl Mater Interfaces 2(11):2987–2991. https://doi.org/10.1021/am100968j

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y, Wang M, Shen L, Sun X, Shi G, Ma W, Yan X (2018) High-performance flexible surface-enhanced Raman scattering substrates fabricated by depositing Ag nanoislands on the dragonfly wing. Appl Surf Sci 436:391–397. https://doi.org/10.1016/j.apsusc.2017.11.212

    Article  CAS  Google Scholar 

  22. Garrett NL, Sekine R, Dixon MW, Tilley L, Bambery KR, Wood BR (2015) Bio-sensing with butterfly wings: naturally occurring nano-structures for SERS-based malaria parasite detection. Phys Chem Chem Phys 17(33):21164–21168. https://doi.org/10.1039/C4CP04930F

    Article  CAS  PubMed  Google Scholar 

  23. Chou S-Y, Yu C-C, Yen Y-T, Lin K-T, Chen H-L, Su W-F (2015) Romantic story or Raman scattering? Rose petals as ecofriendly, low-cost substrates for ultrasensitive surface-enhanced Raman scattering. Anal Chem 87(12):6017–6024. https://doi.org/10.1021/acs.analchem.5b00551

    Article  CAS  PubMed  Google Scholar 

  24. Srichan C, Ekpanyapong M, Horprathum M, Eiamchai P, Nuntawong N, Phokharatkul D, Danvirutai P, Bohez E, Wisitsoraat A, Tuantranont A (2016) Highly-sensitive surface-enhanced Raman spectroscopy (SERS)-based chemical sensor using 3D graphene foam decorated with silver nanoparticles as SERS substrate. Sci Rep 6:23733. https://doi.org/10.1038/srep23733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hawkins G (2018) The skin of commerce: governing through plastic food packaging. J Cult Econ 11(5):386–403. https://doi.org/10.1080/17530350.2018.1463864

    Article  Google Scholar 

  26. Khan A, Asiri AM, Rub MA, Azum N, Khan AAP, Khan SB, Rahman MM, Khan I (2013) Synthesis, characterization of silver nanoparticle embedded polyaniline tungstophosphate-nanocomposite cation exchanger and its application for heavy metal selective membrane. Compos B Eng 45(1):1486–1492. https://doi.org/10.1016/j.compositesb.2012.09.023

    Article  CAS  Google Scholar 

  27. Zhang T, Zhou F, Hang L, Sun Y, Liu D, Li H, Liu G, Lyu X, Li C, Cai W, Li Y (2017) Controlled synthesis of sponge-like porous Au–Ag alloy nanocubes for surface-enhanced Raman scattering properties. J Mater Chem C 5(42):11039–11045. https://doi.org/10.1039/C7TC03855K

    Article  CAS  Google Scholar 

  28. Sun J, Gong L, Lu Y, Wang D, Gong Z, Fan M (2018) Dual functional PDMS sponge SERS substrate for the on-site detection of pesticides both on fruit surfaces and in juice. Analyst 143(11):2689–2695. https://doi.org/10.1039/C8AN00476E

    Article  CAS  PubMed  Google Scholar 

  29. Zhang X, Ai Z, Jia F, Zhang L (2008) Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X= Cl, Br, I) nanoplate microspheres. J Phys Chem C 112(3):747–753. https://doi.org/10.1021/jp077471t

    Article  CAS  Google Scholar 

  30. Chen Y, Liu H, Tian Y, Du Y, Ma Y, Zeng S, Gu C, Jiang T, Zhou J (2020) In situ recyclable surface-enhanced Raman scattering-based detection of multicomponent pesticide residues on fruits and vegetables by the flower-like MoS2@ Ag hybrid substrate. ACS Appl Mater Interfaces 12(12):14386–14399. https://doi.org/10.1021/acsami.9b22725

    Article  CAS  PubMed  Google Scholar 

  31. Jin X, Guo P, Guan P, Wang S, Lei Y, Wang G (2020) The fabrication of paper separation channel based SERS substrate and its recyclable separation and detection of pesticides. Spectrochim Acta A 118561. https://doi.org/10.1016/j.saa.2020.118561

  32. Hussain A, Pu H, Sun D-W (2020) Cysteamine modified core-shell nanoparticles for rapid assessment of oxamyl and thiacloprid pesticides in milk using SERS. J Food Meas Charact 14:2021–2029. https://doi.org/10.1007/s11694-020-00448-7

    Article  Google Scholar 

  33. Oliveira MJ, Rubira RJ, Furini LN, Batagin-Neto A, Constantino C (2020) Detection of thiabendazole fungicide/parasiticide by SERS: quantitative analysis and adsorption mechanism. Appl Surf Sci 517:145786. https://doi.org/10.1016/j.apsusc.2020.145786

    Article  CAS  Google Scholar 

  34. Zhang H, Cui Q, Xu L, Jiao A, Tian Y, Liu X, Li S, Li H, Chen M, Chen F (2020) Blue laser-induced photochemical synthesis of CuAg nanoalloys on h-BN supports with enhanced SERS activity for trace-detection of residual pesticides on tomatoes. J Alloys Compd 825:153996. https://doi.org/10.1016/j.jallcom.2020.153996

    Article  CAS  Google Scholar 

  35. Liang P, Cao Y, Dong Q, Wang D, Jin S, Yu Z, Ye J, Zou M (2020) A balsam pear-shaped CuO SERS substrate with highly chemical enhancement for pesticide residue detection. Microchim Acta 187:335. https://doi.org/10.1007/s00604-020-04303-w

    Article  CAS  Google Scholar 

  36. Barveen NR, Wang T-J, Chang Y-H (2020) Synergistic action of star-shaped au/Ag nanoparticles decorated on AgFeO2 for ultrasensitive SERS detection of a chemical warfare agent on real samples. Anal Methods 12(10):1342–1352. https://doi.org/10.1039/C9AY02347J

    Article  CAS  Google Scholar 

Download references

Funding

This work is jointly supported by the projects from NTUT-NUST-109-01 and NSFC51872141, National Taipei University of Technology and Nanjing University of Science and Technology. This project is supported by the Ministry of Science and Technology (MOST 107-2113-M-027-005-MY3), Taiwan. This work is funded by the Researchers Supporting Project Number (RSP-2020/138) King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shen-Ming Chen or Xiaoheng Liu.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 4800 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balaji, R., Vengudusamy, R., Chen, SM. et al. High-performance SERS detection of pesticides using BiOCl-BiOBr@Pt/Au hybrid nanostructures on styrofoams as 3D functional substrate. Microchim Acta 187, 580 (2020). https://doi.org/10.1007/s00604-020-04558-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04558-3

Keywords

Navigation