Skip to main content
Log in

The Function of β-1,4-Glucuronosyltransferase WelK in the Sphingan WL Gum Biosynthesis Process in Marine Sphingomonas sp. WG

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The marine-derived polysaccharide WL gum produced by Sphingomonas sp. WG showed commercial utility potential in ink, food, and oil industries. A β-1,4-glucuronosyltransferase WelK was predicted to catalyze the transfer of glucuronic acid from UDP-glucuronic acid to glucosyl-α-pyrophosphorylpolyprenol intermediate in the WL gum biosynthesis process. Its function was evaluated by bioinformatical analysis, gene knocking out, and overexpressing strategies. Compared to the wild strain, the WL gum production and broth viscosity of the mutant ∆welK were decreased by 71.5% and 99.2% when cultured for 48 h. The gene disruption led to the failure of product preparation. Homologous expression of welK in the native organism can effectively improve WL gum production. When glucose concentration was 6.7%, the WL gum production by the welK-overexpressing strain cultured for 60 h and 84 h reached 32.65 and 43.13 g/L, 134.1%, and 114% of the wild strain. The polysaccharide composition and qRT-PCR analysis showed that the glucuronic acid content was closely related to the expression level of welK. Thus, WelK was proved to play a critical role in the WL gum synthesis and will be an attractive target for metabolic engineering. Our experiment provided a genetic manipulation method for the functional characterization of genes in Sphingomonas sp. WG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ai H, Liu M, Yu P, Zhang S, Suo Y, Luo P, Li S, Wang J (2015) Improved welan gum production by Alcaligenes sp. ATCC31555 from pretreated cane molasses. Carbohydr Polym 129:35–43

    Article  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  • Bitter T, Muir HM (1962) A modified uronic acid carbazole reaction. Anal Biochem 4:330–334

    Article  CAS  Google Scholar 

  • Breton C, Fournel-Gigleux S, Palcic MM (2012) Recent structures, evolution and mechanisms of glycosyltransferases. Curr Opin Struct Biol 22:540–549

    Article  CAS  Google Scholar 

  • Chen Y, Xie MY, Wang YX, Nie SP, Li C (2009) Analysis of the monosaccharide composition of purified polysaccharides in Ganoderma atrum by capillary gas chromatography. Phytochem Anal 20:503–510

    Article  CAS  Google Scholar 

  • Coleman RJ, Patel YN, Harding NE (2008) Identification and organization of genes for diutan polysaccharide synthesis from Sphingomonas sp. ATCC 53159. J Ind Microbiol Biotechnol 35:263–274

    Article  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Fialho AM, Moreira LM, Granja AT, Popescu AO, Hoffmann K, Sa-Correia I (2008) Occurrence, production, and applications of gellan: current state and perspectives. Appl Microbiol Biotechnol 79:889–900

    Article  CAS  Google Scholar 

  • Finore I, Di Donato P, Mastascusa V, Nicolaus B, Poli A (2014) Fermentation technologies for the optimization of marine microbial exopolysaccharide production. Mar Drugs 12:3005–3024

    Article  CAS  Google Scholar 

  • Geourjon C, Deleage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11:681–684

    CAS  PubMed  Google Scholar 

  • Ha S, Walker D, Shi Y, Walker S (2000) The 1.9 A crystal structure of Escherichia coli MurG, a membrane-associated glycosyltransferase involved in peptidoglycan biosynthesis. Protein Sci 9:1045–1052

    Article  CAS  Google Scholar 

  • Harding NE, Patel YN, Coleman RJ (2004) Organization of genes required for gellan polysaccharide biosynthesis in Sphingomonas elodea ATCC 31461. J Ind Microbiol Biotechnol 31:70–82

    Article  CAS  Google Scholar 

  • Henrissat B, Sulzenbacher G, Bourne Y (2008) Glycosyltransferases, glycoside hydrolases: surprise, surprise! Curr Opin Struct Biol 18:527–533

    Article  CAS  Google Scholar 

  • Hestrin S (1949) The reaction of acetylcholine and other carboxylic acid derivatives with hydroxylamine, and its analytical application. J Biol Chem 180:249–261

    Article  CAS  Google Scholar 

  • Huang H, Li X, Wu M, Wang S, Li G, Ma T (2013) Cloning, expression and characterization of a phosphoglucomutase/phosphomannomutase from sphingan-producing Sphingomonas sanxanigenens. Biotechnol Lett 35:1265–1270

    Article  CAS  Google Scholar 

  • Jia W, Zhang JS, Jiang Y, Zheng ZY, Zhan XB, Lin CC (2012) Structure of oligosaccharide F21 derived from exopolysaccharide WL-26 produced by Sphingomonas sp. ATCC 31555. Carbohydr Polym 90:60–66

    Article  CAS  Google Scholar 

  • Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM II, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  Google Scholar 

  • Lairson LL, Henrissat B, Davies GJ, Withers SG (2008) Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 77:521–555

  • Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA, Mcwilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  Google Scholar 

  • Letunic I, Doerks T, Bork P (2015) SMART: recent updates, new developments and status in 2015. Nucleic Acids Res 43:D257–D260

    Article  CAS  Google Scholar 

  • Li H, Feng ZM, Sun YJ, Zhou WL, Jiao X, Zhu H (2016a) Draft genome sequence of Sphingomonas sp. WG, a Welan gum-producing strain. Genome Announc 4:e01709–e01715

    PubMed  PubMed Central  Google Scholar 

  • Li H, Jiao X, Sun Y, Sun S, Feng Z, Zhou W, Zhu H (2016b) The preparation and characterization of a novel sphingan WL from marine Sphingomonas sp. WG Sci Rep 6:37899

    Article  CAS  Google Scholar 

  • Li H, Li J, Zhou W, Jiao X, Sun Y, Shen Y, Qian J, Wang J, Zhu H (2018) An efficient production of a novel carbohydrate polymer Sphingan WL. J Chem Technol Biotechnol 93:3472–3482

    Article  CAS  Google Scholar 

  • Li H, Li J, Jiao X, Li KH, Sun YJ, Zhou WL, Shen YL, Qian J, Chang AP, Wang JQ, Zhu H (2019) Characterization of the biosynthetic pathway of nucleotide sugar precursor UDP-glucose during sphingan WL gum production in Sphingomonas sp. WG J Biotechnol 302:1–9

    Article  Google Scholar 

  • Pollock TJ, Van Workum WA, Thorne L, Mikolajczak MJ, Yamazaki M, Kijne JW, Armentrout RW (1998) Assignment of biochemical functions to glycosyl transferase genes which are essential for biosynthesis of exopolysaccharides in Sphingomonas strain S88 and Rhizobium leguminosarum. J Bacteriol 180:586–593

    Article  CAS  Google Scholar 

  • Sa-Correia I, Fialho AM, Videira P, Moreira LM, Marques AR, Albano H (2002) Gellan gum biosynthesis in Sphingomonas paucimobilis ATCC 31461: genes, enzymes and exopolysaccharide production engineering. J Ind Microbiol Biotechnol 29:170–176

    Article  CAS  Google Scholar 

  • Salinas SR, Bianco MI, Barreras M, Ielpi L (2011) Expression, purification and biochemical characterization of GumI, a monotopic membrane GDP-mannose:glycolipid 4-{beta}-D-mannosyltransferase from Xanthomonas campestris pv. campestris. Glycobiology 21:903–913

    Article  CAS  Google Scholar 

  • Schmid J, Sperl N, Sieber V (2014) A comparison of genes involved in sphingan biosynthesis brought up to date. Appl Microbiol Biotechnol 98:7719–7733

    Article  CAS  Google Scholar 

  • Schmid J, Sieber V, Rehm B (2015) Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front Microbiol 6:496

  • Sun QL, Wang LY, Shan JJ, Jiang R, Guo LH, Zhang Y, Zhang R, Li Y (2007) Knock-out of the gene (ste15) encoding a glycosyltransferase and its function in biosynthesis of exopolysaccharide in Streptomyces sp. 139. Arch Microbiol 188:333–340

    Article  CAS  Google Scholar 

  • Thorne L, Mikolajczak MJ, Armentrout RW, Pollock TJ (2000) Increasing the yield and viscosity of exopolysaccharides secreted by Sphingomonas by augmentation of chromosomal genes with multiple copies of cloned biosynthetic genes. J Ind Microbiol Biotechnol 25:49–57

    Article  CAS  Google Scholar 

  • Videira P, Fialho A, Geremia RA, Breton C, Sa-Correia I (2001) Biochemical characterization of the beta-1,4-glucuronosyltransferase GelK in the gellan gum-producing strain Sphingomonas paucimobilis A.T.C.C. 31461. Biochem J 358:457–464

    Article  CAS  Google Scholar 

  • Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, Hochstrasser DF (1999) Protein identification and analysis tools in the ExPASy server. Methods Mol Biol 112:531–552

    CAS  PubMed  Google Scholar 

  • Yamazaki M, Thorne L, Mikolajczak M, Armentrout RW, Pollock TJ (1996) Linkage of genes essential for synthesis of a polysaccharide capsule in Sphingomonas strain S88. J Bacteriol 178:2676–2687

    Article  CAS  Google Scholar 

  • Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester M, Foster LJ, Brinkman FSL (2010) PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26:1608–1615

    Article  CAS  Google Scholar 

  • Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40

    Article  Google Scholar 

  • Zhang J, Dong YC, Fan LL, Jiao ZH, Chen QH (2015) Optimization of culture medium compositions for gellan gum production by a halobacterium Sphingomonas paucimobilis. Carbohydr Polym 115:694–700

    Article  CAS  Google Scholar 

  • Zhou WL, Jiao X, Sun YJ, Li H, Zhu H (2017) Determination of extracellular polysaccharides produced by marine derived Sphingomonas sp. WG. Chin J Mar Drugs 36:27–34

    Google Scholar 

  • Zhu P, Chen X, Li S, Xu H, Dong S, Xu Z, Zhang Y (2014) Screening and characterization of Sphingomonas sp. mutant for welan gum biosynthesis at an elevated temperature. Bioprocess Biosyst Eng 37:1849–1858

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (31800075 and U1805234), 863 Program (2015AA020925), Natural Science Foundation of Fujian Province of China (2019J01264), Minjiang Scholar (2013A13), startup fund for high-level talent at Fujian Normal University (004828), Fundamental Research Funds for the Central Universities (18CX02124A), and the Development Fund of State Key Laboratory of Heavy Oil Processing (20CX02202A).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiqian Wang or Hu Zhu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1353 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Li, K., Guo, Z. et al. The Function of β-1,4-Glucuronosyltransferase WelK in the Sphingan WL Gum Biosynthesis Process in Marine Sphingomonas sp. WG. Mar Biotechnol 23, 39–50 (2021). https://doi.org/10.1007/s10126-020-09998-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-020-09998-9

Keywords

Navigation