Skip to main content
Log in

Calculation of Magnetization and Magnetic Susceptibility Close to Magnetic Phase Transitions in (CH3)2NH2FeIIINiII(HCOO)6 and (CH3)2NH2FeIIICuII(HCOO)6

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We study the temperature and magnetic field dependence of the magnetization (\( M \)) and the inverse susceptibility (χ−1) in the metal–organic frameworks, in particular, for (CH3)2NH2FeIIINiII(HCOO)6 (DMFeNi) and (CH3)2NH2FeIIICuII(HCOO)6 (DMFeCu) close to their magnetic phase transitions. The Landau phenomenological model is employed to analyze the experimental data for the \( M\left( {T, H} \right) \) from the literature and to calculate χ−1(T, H) of DMFeNi and DMFeCu. Our results indicate that the thermodynamic model studied explains adequately the observed behavior of \( M\left( {T, H} \right) \) for DMFeNi and DMFeCu, which exhibit a weakly first-order (or nearly second order) magnetic phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R.J. Kuppler, D.J. Timmons, Q.R. Fang, J.R. Li, T.A. Makal, M.D. Young, H.C. Zhou, Coord. Chem. Rev. 253, 3042 (2009)

    Google Scholar 

  2. L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P.V. Duyne, J.T. Hupp, Chem. Rev. 112, 1105 (2012)

    Google Scholar 

  3. Y. Cui, Y. Yue, G. Qian, B. Chen, Chem. Rev. 112, 1126 (2012)

    Google Scholar 

  4. W. Zhang, R.G. Xiong, Chem. Rev. 112, 1163 (2012)

    Google Scholar 

  5. J. Gao, K. Ye, I. Yang, W.W. Xiong, I. Ye, Y. Wang, Q. Zhang, Inorg. Chem. 53, 691 (2014)

    Google Scholar 

  6. J. Gao, J. Miao, P.Z. Li, W.Y. Teng, I. Yang, Y. Zhao, B. Liu, Q. Zhang, Chem. Commun. 50, 3786 (2015)

    Google Scholar 

  7. M. Maczka, A. Gagor, K. Hermanowicz, A. Sieradzki, L. Macalik, A. Pikul, J. Solid State Chem. 237, 150 (2016)

    ADS  Google Scholar 

  8. M. Guo, H.L. Cai, R.G. Xiong, Inorg. Chem. Commun. 13, 1590 (2010)

    Google Scholar 

  9. A.S. Tayi, A. Kaeser, M. Matsumoto, T. Aida, S.I. Stupp, Nat. Chem. 7, 281 (2015)

    Google Scholar 

  10. N.A. Hill, J. Phys. Chem. 104, 6694 (2000)

    Google Scholar 

  11. K.F. Wang, J.M. Liu, Z.F. Ren, Adv. Phys. 58, 321 (2009)

    ADS  Google Scholar 

  12. R. Ramesh, Nature 461, 1218 (2009)

    ADS  Google Scholar 

  13. G. Rogez, N. Viart, M. Drillon, Angew. Chem. Int. Ed. 49, 1921 (2010)

    Google Scholar 

  14. J.P. Zhao, S.D. Han, F.C. Liu, Inorg. Chem. 58, 1184 (2019)

    Google Scholar 

  15. J.P. Zhao, J. Xu, S.D. Han, Q.L. Wang, X.H. Bu, Adv. Mater. 29, 1606966 (2017)

    Google Scholar 

  16. J.P. Zhao, S.D. Han, X. Jiang, S.J. Liu, R. Zhao, Z. Chang, X.H. Bu, Chem. Commun. 51, 8288 (2015)

    Google Scholar 

  17. Y.J. Ma, J.X. Hu, S.D. Han, J. Pan, J.H. Li, G.M. Wang, Chem. Commun. 55, 5631 (2019)

    Google Scholar 

  18. J.H. Qin, Y.D. Huang, Y. Zhao, X.G. Yang, F.F. Li, C. Wang, L.F. Ma, Inorg. Chem. 58, 15013 (2019)

    Google Scholar 

  19. S.D. Han, D. Wang, J. Pan, Q. Wei, J.H. Li, G.M. Wang, Inorg. Chem. 57, 11318 (2018)

    Google Scholar 

  20. D.S. Zhang, Y.Z. Zhang, X. Zhang, F. Wang, J. Zhang, H. Hu, J. Gao, H. Yan, H.L. Liu, H.Y. Ma, L.L. Geng, Y.W. Li, A.C.S. Appl, Mater. Interfaces 11, 20104 (2019)

    Google Scholar 

  21. P. Jain, V. Ramachandran, R.J. Clark, H.D. Zhou, B.H. Toby, N.S. Dalal, H.W. Kroto, A.K. Cheetham, J. Am. Chem. Soc. 131, 13625 (2009)

    Google Scholar 

  22. G. Rogez, N. Viort, M. Drillon, Angew. Chem. Int. Ed. 49, 1510 (2010)

    Google Scholar 

  23. Y. Tian, A. Stroppa, Y. Chai, L. Yan, S. Wang, P. Barone, S. Picozzi, Y. Sun, Sci. Rep. 4, 1 (2014)

    Google Scholar 

  24. T. Besara, P. Jain, N.S. Dalal, P.L. Kuhns, A.P. Reyes, H.W. Kroto, A.K. Cheetham, Proc. Nat. Acad. Soc. USA 108, 6828 (2011)

    ADS  Google Scholar 

  25. M. Maczka, A. Gagor, B. Macalik, A. Pikul, M. Ptak, J. Hanuza, Inorg. Chem. 53, 457 (2014)

    Google Scholar 

  26. M. Maczka, M. Ptak, L. Macalik, Vib. Spectrosc. 71, 98 (2014)

    Google Scholar 

  27. A. Ciupa, M. Maczka, A. Gagor, A. Pikul, M. Ptak, Dalton Trans. 44, 13234 (2015)

    Google Scholar 

  28. M.Y. Li, M. Kurmoo, Z.M. Wang, S. Gao, Chem. Asian J. 6, 3084 (2011)

    Google Scholar 

  29. A. Ciupa, M. Maczka, A. Gagor, A. Sieradzki, J. Trzmiel, A. Pikul, M. Ptak, Dalton Trans. 44, 8846 (2015)

    Google Scholar 

  30. A. Stroppa, P. Barone, P. Jaain, J.M. Perez-Mato, S. Picozzi, Adv. Mater. 25, 2284 (2013)

    Google Scholar 

  31. D. Di Sante, A. Stroppa, P. Jain, S. Picozzi, J. Am. Chem. Soc. 135, 18126 (2013)

    Google Scholar 

  32. S. Ghosh, D. Di Sante, A. Stroppa, J. Phys. Chem. Lett. 6, 4553 (2015)

    Google Scholar 

  33. M. Ptak, M. Maczka, A. Gagor, A. Sieradzki, A. Stroppa, D. Di Sante, J.M. Perez-Mato, L. Macalik, Dalton Trans. 45, 2574 (2016)

    Google Scholar 

  34. M. Maczka, P. Kadlubanski, P.T.C. Freire, B. Macalik, W. Paraguassu, K. Hermanowicz, J. Hanuza, Inorg. Chem. 53, 9615 (2014)

    Google Scholar 

  35. F.Y. Wu, Rev. Mod. Phys. 54, 235 (1982)

    ADS  Google Scholar 

  36. M.S.S. Challa, D.P. Landau, K. Binder, Phys. Rev. B 34, 1841 (1986)

    ADS  Google Scholar 

  37. W. Janke, R. Villanova, Nucl. Phys. B 489, 679 (1997)

    ADS  Google Scholar 

  38. M. Simenas, S. Balciunas, M. Maczka, J. Banys, E. Tornau, Phys. Chem. Chem. Phys. 18, 18528 (2016)

    Google Scholar 

  39. G. Kieslich, S. Kumagai, K.T. Butler, T. Okamura, C.H. Hendon, S.J. Sun, M. Yamashita, A. Walsh, A.K. Cheetham, Chem. Commun. 51, 15538 (2015)

    Google Scholar 

  40. R. Brout, Phase Transitions. Chapter 2 (Benjamin, New York, 1965)

    Google Scholar 

  41. H. Yurtseven, E.K. Dogan, Polyhedron 154, 132 (2018)

    Google Scholar 

  42. E.K. Dogan, H. Yurtseven, Curr. Appl. Phys. 19, 1096 (2019)

    ADS  Google Scholar 

  43. H. Yurtseven, E.K. Dogan, Mater. Res. Bull. 119, 110572 (2019)

    Google Scholar 

  44. H. Yurtseven, O. Tari, Int. J. Mod. Phys. B 33, 1950103 (2019)

    ADS  Google Scholar 

  45. O. Tari, H. Yurtseven, Mater. Chem. Phys. 228, 118 (2019)

    Google Scholar 

  46. M.A. Carpenter, E.K. Salje, A.G. Barber, B. Wruck, M.T. Dove, K.S. Knight, Am. Min. 83, 2 (1998)

    ADS  Google Scholar 

  47. M. Maczka, A. Gagor, M. Ptak, W. Paraguassi, T. Almedia da Silva, A. Sieradzki, A. Pikul, Chem. Mater. 29, 2264 (2017)

    Google Scholar 

  48. J.P. Zhao, B.W. Hu, F. Lloret, J. Tao, Q. Yang, X.F. Zhang, X.H. Bu, Inorg. Chem. 49, 10390 (2010)

    Google Scholar 

  49. L. Canadillas-Delgado, O. Fabelo, J.A. Rodriguez-Velamazan, M.H. Lemee-Cailleau, S.A. Mason, E. Pardo, F. Lloret, J.P. Zhao, X.H. Bu, C.V. Colin, J. Rodriguez-Carvajal, J. Am. Chem. Soc. 134, 19772 (2012)

    Google Scholar 

  50. M. Maczka, A. Ciupa, A. Gagor, A. Sieradzki, A. Pikul, M. Ptak, J. Mater. Chem. C 4, 1186 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Yurtseven.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yurtseven, H., Tari, O. Calculation of Magnetization and Magnetic Susceptibility Close to Magnetic Phase Transitions in (CH3)2NH2FeIIINiII(HCOO)6 and (CH3)2NH2FeIIICuII(HCOO)6. J Low Temp Phys 202, 145–159 (2021). https://doi.org/10.1007/s10909-020-02530-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02530-2

Keywords

Navigation