Skip to main content

Advertisement

Log in

Invasive potential of golden and zebra mussels in present and future climatic scenarios in the new world

  • INVASIVE SPECIES III
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Biological invasions and climate change are important drivers of biodiversity loss. In freshwater ecosystems, golden and zebra mussels are two highly aggressive invasive species that have caused ecological and economic damages in South and North America, respectively. Here, we used ecological niche models (ENMs) to investigate the invasive potential of golden and zebra mussels in present and future scenarios of global warming in the New World. We found two main patterns in the distribution of suitable areas for golden and zebra mussels. First, the distribution of potentially suitable areas, both in present and future scenarios, is different between mussel species: zebra mussel has areas that are more suitable in temperate regions, while suitable areas for golden mussel are concentrated in tropical and subtropical regions. Second, suitable habitats for golden mussel will increase more in future global warming scenarios compared to suitable habitats for zebra mussel. Indeed, there are experimental indications that zebra mussel has a lower tolerance to high temperatures compared to golden mussel, which is in agreement with our findings. We recommend that the future monitoring of both golden and zebra mussels in the New World should consider areas of highest thermic suitability for current and future scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andrade, J. T. M., N. I. S. Cordeiro, L. C. Montresor, D. M. R. da Luz, E. M. D. Viana, C. B. Martinez & T. H. D. A. Vidigal, 2020. Tolerance of Limnoperna fortunei (Dunker, 1857) (Bivalvia: Mytilidae) to aerial exposure at different temperatures. Hydrobiologia. https://doi.org/10.1007/s10750-020-04191-4 (in press).

    Article  Google Scholar 

  • Araújo, M. B. & M. New, 2007. Ensemble forecasting of species distributions. Trends in Ecology and Evolution 22: 42–47.

    Article  PubMed  Google Scholar 

  • Banerjee, A. K, N. E. Harms, A. Mukherjee & J. F. Gaskin, 2020. Niche dynamics and potential distribution of Butomus umbellatus under current and future climate scenarios in North America. Hydrobiologia 847: 1505–1520.

    Article  Google Scholar 

  • Barbosa, N. P., F. A. Silva, M. D. de Oliveira, M. A. dos Santos Neto, M. D. de Carvalho & A. V. Cardoso, 2016. Limnoperna fortunei (Dunker, 1857) (Mollusca, Bivalvia, Mytilidae): first record in the São Francisco river basin, Brazil. Check List 12: 1-6.

    Article  Google Scholar 

  • Barbosa, N. F. U., J. A. Ferreira, C. A. R. Nascimento, F. A. Silva, V. A. Carvalho, E. R. S. Xavier, L. Ramon, C. C. Almeida, M. D. Carvalho & A. V. Cardoso, 2018. Prediction of future risk of invasion by Limnoperna fortunei (Dunker, 1857) (Mollusca, Bivalvia, Mytilidae) in Brazil with cellular automata. Ecological Indicators 92: 30-39.

    Article  Google Scholar 

  • Bellard, C., C. Bertelsmeier, P. Leadley, W. Thuiller & F. Courchamp, 2012. Impacts of climate change on the future of biodiversity. Ecology Letters 15: 365–37.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bellard, C., W. Thuiller, B. Leroy, P. Genovesi, M. Bakkenes & F. Courchamp, 2013. Will climate change promote future invasions? Global Change Biology 19: 3740–3748.

    Article  PubMed  PubMed Central  Google Scholar 

  • Benson, A. J., 2014. Chronological history of zebra and quagga mussels (Dreissenidae) in North America, 1988-2010. In: Nalepa, T. F. & D. W. Schloesser (eds) Quagga and Zebra Mussels: Biology, Impacts, and Control, 2 ed, CRC Press, Boca Raton (USA), pp 9-32

    Google Scholar 

  • Boltovskoy, D., N. Correa, D. Cataldo & F. Sylvester, 2006. Dispersion and ecological impact of the invasive freshwater bivalve Limnoperna fortunei in the Río de la Plata watershed and beyond. Biological Invasions 8: 947–963.

    Article  Google Scholar 

  • Boltovskoy, D., & N. Correa, 2015. Ecosystem impacts of the invasive bivalve Limnoperna fortunei (golden mussel) in South America. Hydrobiologia 746: 81–95.

    Article  CAS  Google Scholar 

  • Boltovskoy, D., M. Xu & D. Nakano, 2015a. Impacts of Limnoperna fortunei on man-made structures and control strategies: general overview. In Limnoperna fortunei (pp. 375-393). Springer, Cham.

    Google Scholar 

  • Boltovskoy, D., B. Morton, N. Correa, D. Cataldo, C. Damborenea, P.E. Penchaszadeh & F. Sylvester, 2015b. Reproductive output and seasonality of Limnoperna fortunei. In: Boltovskoy, D. (ed) Limnoperna fortunei: The Ecology, Distribution and Control of a Swiftly Spreading Invasive Fouling Mussel, Springer, Cham (Switzerland).

    Google Scholar 

  • Bossenbroek, J. M., L. E. Johnson, B. Peters & D. M. Lodge, 2007. Forecasting the expansion of zebra mussels in the United States. Conservation Biology 21: 800-810.

    Article  PubMed  Google Scholar 

  • Burlakova, L. E., B. L. Tulumello, A. Y. Karatayev, R. A. Krebs, D. W. Schloesser, W. L. Paterson, T. A. Griffith, M. W. Scott, T. Crail & D. T. Zanatta, 2014. Competitive replacement of invasive congeners may relax impact on native species: interactions among zebra, quagga, and native unionid mussels. PLoS ONE 9:e114926

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Busby, J. R., 1991. BIOCLIM: a bioclimatic analysis and prediction system. In Margules, C. R. & M. P. Austin (eds), Conservation: Cost Effective Biological Surveys and Data Analysis. CSIRO Publishing, Melbourne 64–68.

    Google Scholar 

  • Capinha, C. & P. Anastácio, 2011. Assessing the environmental requirements of invaders using ensembles of distribution models. Diversity and Distributions 17: 13–24.

    Article  Google Scholar 

  • Choi, S. S. & J. S. Kim, 1985. Studies on the metamorphosis and the growth of larva in Limnoperna fortunei. The Korean Journal of Malacology 1:13-18

    Google Scholar 

  • Choi, S. S. & C. N. Shin, 1985. Study on the early development and larvae of Limnoperna fortunei. The Korean Journal of Malacology 1: 5–12.

    Google Scholar 

  • Crystal-Ornelas, R., & J. L. Lockwood, 2020. The ‘known unknowns’ of invasive species impact measurement. Biological Invasions, 22: 1513-1525.

    Article  Google Scholar 

  • da Conceição, E. D., T. Mantovano, T., R., de Campos, T. F. Rangel, K. Martens, D. Bailly, & J. Higuti. 2020. Mapping the observed and modelled intracontinental distribution of non-marine ostracods from South America. Hydrobiologia 847: 1663-1687.

    Article  Google Scholar 

  • Daga, V. S., J. D. Olden, E. A. Gubiani, P. A. Piana, A. A. Padial, & J. R. S. Vitule. 2020. Scale-dependent patterns of fish faunal homogenization in Neotropical reservoirs. Hydrobiologia. DOI: 10.1007/s10750-019-04145-5

    Article  Google Scholar 

  • Darrigran, G., 2002. Potential impact of filter-feeding invaders on temperate inland freshwater environments. Biological Invasions 4: 145-156.

    Article  Google Scholar 

  • Darrigran, G. & C. Damborenea, 2011. Ecosystem engineering impacts of Limnoperna fortuneiin South America. Zoological Science 28: 1-7.

    Article  PubMed  Google Scholar 

  • Darrigran, G., C. Damborenea, P. Penchaszadeh & C. Taraborelli, 2003. Reproductive stabilization of Limnoperna fortunei (Bivalvia Mytilidae) after ten years of invasion in the Americas. Journal of Shellfish Research 22: 141–146.

    Google Scholar 

  • Darrigran, G., C. Damborenea, E. Drago, I. Ezcurra de Drago & A. Paira, 2011. Environmental factors restrict the invasion process of Limnoperna fortunei (Mytilidae) in the Neotropical Region: a case study from the Andean tributaries. Annales de Limnologie - International Journal of Limnology 47:1-10.

    Article  Google Scholar 

  • Darrigran, G., C. Damborenea, E. Drago, I. Ezcurra de Drago, A. Paira & F. Archuby, 2012. Invasion process of Limnoperna fortunei (Bivalvia, Mytilidae): the case of Uruguay River and emissaries of the Esteros del Iberá Wetland (Argentina). Zoologia 29: 531-539.

    Article  Google Scholar 

  • Darrigran, G., I. Agudo-Padrón, P. Baez, C. Belz, F. Cardoso, A. Carranza, G. Collado; M. Correoso; M. G. Cuezzo, A. Fabres, D. E. Gutiérrez Gregoric, S. Letelier, S. Ludwig, M. C. Mansur, G. Pastorino, P. Penchaszadeh, C. Peralta, A. Rebolledo, A. Rumi, S. Santos, S. Thiengo, T. Vidigal & C. Damborenea, 2020. Non-native mollusks throughout South America: emergent patterns in an understudied continent. Biological Invasions 22: 853-871.

    Article  Google Scholar 

  • Diniz-Filho, J. A. F., L. M. Bini, T. Rangel, R. D. Loyola, C. Hof, D. Nogués‐Bravo & M. B. Araújo, 2009. Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32: 897–906.

    Article  Google Scholar 

  • Dudgeon, D., A. H. Arthington, M. O. Gessner & Z-I. Kawabata, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163–182.

    Article  PubMed  Google Scholar 

  • Elith, J., 2000. Quantitative methods for modeling species habitat: comparative performance and an application to Australian plants. Quantitative Methods for Conservation Biology. Springer, New York, pp 39–58.

    Google Scholar 

  • Gallardo, B., P. S. E. Z. Ermgassen & D. C. Aldridge, 2013. Invasion ratcheting in the zebra mussel (Dreissena polymorpha) and the ability of native and invaded ranges to predict its global distribution. Journal of Biogeography 40: 2274–2284.

    Article  Google Scholar 

  • Gama, M., D. Crespo, M. Dolbeth & P. M. Anastácio, 2017. Ensemble forecasting of Corbicula fluminea worldwide distribution: projections of the impact of climate change. Aquatic Conservation: Marine and Freshwater Ecosystems 27: 675–684.

    Article  Google Scholar 

  • Garton, D. W., Berg, D. J. & R. J. Fletcher, 1990. Thermal tolerances of the predatory cladocerans Bythotrephes cederstroemi and Leptodora kindti: relationship to seasonal abundance in Western Lake Erie. Canadian Journal of Fisheries and Aquatic Sciences 47: 731-738.

    Article  Google Scholar 

  • Giglio, M., M. C. Dreher Mansur, C. Damborenea, P. Penchaszadeh & G. Darrigran, 2016. Reproductive pattern of the aggressive invader Limnoperna fortunei (Bivalvia, Mytilidae) in South America. Invertebrate Reproduction & Development 60: 175-184.

    Article  Google Scholar 

  • Gillard, M., Thiébaut, G., Deleu, C. & B. Leroy, 2017. Present and future distribution of three aquatic plants taxa across the world: decrease in native and increase in invasive ranges. Biological Invasions 19: 2159-2170.

    Article  Google Scholar 

  • Guisan, A., B. Petitpierre, O. Broennimann, C. Daehler & C. Kueffer, 2014. Unifying niche shift studies: insights from biological invasions. Trends in Ecology & Evolution 29: 260–269.

    Article  Google Scholar 

  • Hasler, C. T., J. Leathers, A. Ducharme & N. J. Casson, 2019. Biological effects of water velocity and other hydrodynamic characteristics of flow on dreissenid mussels. Hydrobiologia 837: 1–14.

    Article  CAS  Google Scholar 

  • Hijmans, R. J., S. Phillips, J. Leathwick & J. Elith, 2011. Package ‘dismo’ [available on internet from https://cran.r-project.org/web/packages/dismo/index.html].

  • Jenkins, M., 2003. Prospects for Biodiversity. Science 302: 1175–1177.

    Article  CAS  PubMed  Google Scholar 

  • Karatayev, A. Y., L. E. Burlakova & D. K. Padilla, 1998. Physical factors that limit the distribution and abundance of Dreissena polymorpha. Journal of Shellfish Research 17: 1219–1235.

    Google Scholar 

  • Karatayev, A. Y., D. Boltovskoy, D. K. Padilla & L. E. Burlakova, 2007. The invasive bivalves Dreissena polymorpha and Limnoperna fortunei: parallels, contrasts, potential spread and invasion impacts. Journal of Shellfish Research, 26: 205–213.

    Article  Google Scholar 

  • Karatayev, A. Y., L. E. Burlakova, V. A. Karatayev & D. Boltovskoy, 2010. Limnoperna fortunei versus Dreissena polymorpha: population densities and benthic community impacts of two invasive freshwater bivalves. Journal of Shellfish Research 29: 975–984.

    Article  Google Scholar 

  • Karatayev, A.Y., L. E. Burlakova & D. K. Padilla, 2014. General overview of zebra and quagga mussels. What we do and do not know. In: Nalepa, T. F. & D. W. Schloesser DW (eds) Quagga and Zebra Mussels: Biology, Impacts, and Control, 2 Ed, CRC Press, Boca Raton (USA), pp 695-703.

    Google Scholar 

  • Karatayev, A. Y., L. E. Burlakova, S. E. Mastitsky & D. K. Padilla, 2015a. Predicting the spread of aquatic invaders: insight from 200 years of invasion by zebra mussels. Ecological Applications 25:430-440.

    Article  PubMed  Google Scholar 

  • Karatayev, A. Y., D. Boltovskoy, L. E. Burlakova & D. K. Padilla, 2015b. Parallels and contrasts between Limnoperna fortunei and species of Dreissena. Invading Nature - Springer Series in Invasion Ecology 10, Springer, Cham.

    Google Scholar 

  • Kramer, A. M., G. Annis, M. E. Wittmann, W. L. Chadderton, E. S. Rutherford, D. M. Lodge, L. Mason, D. Beletsky, C. Riseng & J. M. Drake, 2017. Suitability of Laurentian Great Lakes for invasive species based on global species distribution models and local habitat. Ecosphere 8:e01883.

    Article  Google Scholar 

  • Labecka, A. M. & M. Czarnoleski. 2019. Patterns of growth, brooding and offspring size in the invasive mussel Sinanodonta woodiana (Lea, 1834) (Bivalvia: Unionidae) from an anthropogenic heat island. Hydrobiologia. DOI: 10.1007/s10750-019-04141-9

    Article  Google Scholar 

  • Lamsal, P., Kumar, L. Aryal, A. & K. Atreya, 2018. Invasive alien plant species dynamics in the Himalayan region under climate change. Ambio 47: 697-710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lennon, J. T., V. H. Smith, & K. Williams, 2001. Influence of temperature on exotic Daphnia lumholtzi and implications for invasion success. Journal of Plankton Research 23: 425-433.

    Article  Google Scholar 

  • Lopes, T. M., D. Bailly, B. A. Almeida, N. C. L. Santos, B. C. G. Gimenez, G. O. Landgraf, P. C. L. Sales, M. S. Lima-Ribeiro, F. A. S., Cassemiro, T. Rangel, J. A. F. Diniz-Filho, A. A. Agostinho & L. C. Gomes, 2017. Two sides of a coin: effects of climate change on the native and non-native distribution of Colossoma macropomum in South America. PLoS ONE 12(6):e0179684.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mackie, G. L. & J. K. Brinsmead, 2017. A risk assessment of the golden mussel, Limnoperna fortunei (Dunker, 1857) for Ontario, Canada. Management of Biological Invasions 8: 383-402.

    Article  Google Scholar 

  • Magara, Y., Y. Matsui, Y. Goto & A. Yuasa, 2001. Invasion of the non-indigenous nuisance mussel, Limnoperna fortunei, into water supply facilities in Japan. Journal of Water Supply: Research and Technology - Aqua 50:113-124.

    Article  Google Scholar 

  • McKinney, M. L. & J. L. Lockwood, 1999. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends in Ecology and Evolution 14: 450–453.

    Article  CAS  PubMed  Google Scholar 

  • McMahon, R. F. & J. L. Tsou, 1990. Impact of European zebra mussel infestations to the electric power industry. Annual Meeting, American Power Conference, Chicago, IL, April 1990: 9.

  • Morton, B., 1996. The aquatic nuisance species problem: a global perspective and review. In D’Itri FM (ed), Zebra Mussels and Other Aquatic Nuisance Species. Ann Arbor Press, Chelsea 1–54.

    Google Scholar 

  • Oliveira, M. D., S. K. Hamilton & C. M. Jacobi, 2010a. Forecasting the expansion of the invasive golden mussel Limnoperna fortunei in Brazilian and North American rivers based on its occurrence in the Paraguay River and Pantanal wetland of Brazil. Aquatic Invasions 5: 59–73.

    Article  Google Scholar 

  • Oliveira, M. D., S. K. Hamilton, D. F. Calheiros, C. M. Jacobi & R. O. Latini, 2010b. Modeling the potential distribution of the invasive Golden mussel Limnoperna fortunei in the Upper Paraguay River system using limnological variables. Brazilian Journal of Biology 70: 831–840.

    Article  CAS  Google Scholar 

  • Oliveira, M. D., D. F. Calheiros, C. M. Jacobi & S. K. Hamilton, 2011. Abiotic factors controlling the establishment and abundance of the invasive golden mussel Limnoperna fortunei. Biological Invasions 13: 717–729.

    Article  Google Scholar 

  • Park, H-K., K-H. Cho, D. H. Won, J. Lee, D-S. Kong & D-I. Jung, 2013. Ecosystem responses to climate change in a large on-river reservoir, Lake Paldang, Korea. Climatic Change 120: 477–489.

    Article  Google Scholar 

  • Paruelo, J. M., A. Beltrán, E. Jobbágy, O. E. Sala & R. A. Golluscio, 1998. The climate of Patagonia: general patterns and controls on biotic processes. Ecología Austral 8: 85–101.

    Google Scholar 

  • Pastorino, G., G. Darrigran, S. M. Martín & L. Lunaschi, 1993. Limnoperna fortunei (Dunker, 1857) (Mytilidae), nuevo bivalvo invasor en aguas del Río de La Plata. Neotropica 39: 101-110.

    Google Scholar 

  • Peoples, B. K., A. J. S. Davis, S. R. Midway, J. D. Olden & L. Stoczynski. 2020. Landscape-scale drivers of fish faunal homogenization and differentiation in the eastern United States. Hydrobiologia. DOI: 10.1007/s10750-019-04162-4

    Article  Google Scholar 

  • Peterson, A. T., 2003. Predicting the geography of species’ invasions via ecological niche modeling. The Quarterly Review of Biology 78: 419–433.

    Article  PubMed  Google Scholar 

  • Peterson, A. T, J. Soberón, R. G. Pearson, R. P. Anderson, E. Martínez-Meyer, M. Nakamura & M. B. Araújo, 2011. Ecological Niches and Geographic Distributions (MPB-49). Princeton University Press, Princeton, 56.

    Book  Google Scholar 

  • Petsch, D. K., 2016. Causes and consequences of biotic homogenization in freshwater ecosystems. International Review of Hydrobiology, 101: 113-122.

    Article  Google Scholar 

  • Phillips, S. J., R. P. Anderson & R. E. Schapire, 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231–259.

    Article  Google Scholar 

  • Quinn, A., B. Gallardo & D. Aldridge, 2014. Global distribution and overlap of zebra (Dreissena polymorpha) and quagga (Dreissena r. bugensis) mussels. Aquatic Conservation Marine and Freshwater Ecosystems. DOI: 10.1002/aqc.2414

    Article  Google Scholar 

  • R Core Team, 2019. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria [available on internet at https://www.R-project.org/].

  • Rahel, F. J., 2002. Using present biogeographic limits to predict fish distributions following climate change. In: McGinn, N. A. (ed), Fisheries in a changing climate. Symposium 32. American Fisheries Society, Bethesda, Maryland 99–110.

  • Rahel, F. J., 2007. Biogeographic barriers, connectivity, and biotic homogenization: it’s a small world after all. Freshwater Biology 52: 696–710.

    Article  Google Scholar 

  • Rahel, F. J. & J. F. Olden, 2008. Assessing the effects of climate change on aquatic invasive species. Conservation Biology 22: 521–533.

    Article  PubMed  Google Scholar 

  • Ribas, L. G. S, C. de Cássia-Silva, D. K. Petsch, M. J. Silveira & M. S. Lima-Ribeiro, 2018. The potential invasiveness of an aquatic macrophyte reflects founder effects from native niche. Biological Invasions 20: 3347–3355.

    Article  Google Scholar 

  • Ricciard, A., 2003. Predicting the impacts of an introduced species from its invasion history: an empirical approach applied to zebra mussel invasions. Freshwater Biology 48: 972–981.

    Article  Google Scholar 

  • Ricciardi, A., 1998. Global range expansion of the Asian mussel Limnoperna fortunei (Mytilidae): another fouling threat to freshwater systems. Biofouling 13: 97–106.

    Article  Google Scholar 

  • Rodrigues, J. F. M., M. T. P. Coelho, S. Varela & J. A. F. Diniz-Filho, 2016a. Invasion risk of the pond slider turtle is underestimated when niche expansion occurs. Freshwater Biology 61: 1119–1127.

    Article  Google Scholar 

  • Rodrigues, J. F. M., M. T. P. Coelho & J. A. F. Diniz-Filho, 2016b. Exploring intraspecific climatic niche conservatism to better understand species invasion: the case of Trachemys dorbigni (Testudines, Emydidae). Hydrobiologia 779: 127–134.

    Article  Google Scholar 

  • Sala, O. E., F. S. Chapin, J. J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L. F. Huenneke, R. B. Jackson, A. Kinzig, R. Leemans, D. M. Lodge, H. A. Mooney, M. Oesterheld, N. L. Poff, M. T. Syke, B. H. Walker, M. Walker & D. H. Wall, 2000. Global biodiversity scenarios for the year 2100. Science 287: 1770–1774.

    Article  CAS  PubMed  Google Scholar 

  • Sales, L. P., B. R. Ribeiro, M. W. Hayward, A. Paglia, M. Passamani & R. Loyola, 2017. Niche conservatism and the invasive potential of the wild boar. Journal of Animal Ecology 86: 1214–1223.

    Article  Google Scholar 

  • Sardiña, P., D. Cataldo & D. Boltovskoy, 2008. The effects of the invasive mussel, Limnoperna fortunei, on associated fauna in South American freshwaters: importance of physical structure and food supply. Archiv für Hydrobiologie 173: 135–144.

    Article  Google Scholar 

  • Soberón, J., 2007. Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters 10: 1115-1123.

    Article  PubMed  Google Scholar 

  • Sousa, R., A. Novais, R. Costa & D. L. Strayer, 2014. Invasive bivalves in fresh waters: impacts from individuals to ecosystems and possible control strategies. Hydrobiologia 735: 233–25.

    Article  Google Scholar 

  • Strayer, D. L., 2009. Twenty years of zebra mussels: lessons from the mollusk that made headlines. Frontiers in Ecology and the Environment 7: 135–141.

    Article  Google Scholar 

  • Strayer, D. L., et al., 2019. Long-term population dynamics of dreissenid mussels (Dreissena polymorpha and D. rostriformis): a cross-system analysis. Ecosphere 10:e02701.

    Article  Google Scholar 

  • Swets, J. A., 1988. Measuring the accuracy of diagnostic systems. Science 240: 1285-1293.

    Article  CAS  PubMed  Google Scholar 

  • Takeda, A. M., D. S. Fujita & H. M Fontes Jr, 2004. Perspectives on exotic bivalves proliferation in the Upper Paraná River floodplain. In Agostinho A.A., L. Rodrigues, L. C. Gomes, S. M. Thomaz & L. E. Miranda L.E. (eds). Structure and Functioning of the Paraná River and its Floodplain. EDUEM, Maringá 97-100.

    Google Scholar 

  • Terribile, L. C., D. T. Feitosa, M. G. Pires, P. C. R. de Almeida, G. de Oliveira, J. A. F. Diniz-Filho & N. J. da Silva Jr., 2018. Reducing Wallacean shortfalls for the coralsnakes of the Micrurus lemniscatus species complex: present and future distributions under a changing climate. PLoS ONE, 13: e0205164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomas, C. D., 2010. Climate, climate change and range boundaries. Diversity and Distributions 16: 488–495.

    Article  Google Scholar 

  • Torres, U., W. Godsoe, H. L. Buckley, M. Parry, A. Lustig & S. P. Worner, 2018. Using niche conservatism information to prioritize hotspots of invasion by non‐native freshwater invertebrates in New Zealand. Diversity and Distributions 24: 1802-1815.

    Article  Google Scholar 

  • Vapnik, V. & A. Chervonenkis, 1998. Statistical learning theory. In Support Vector Machines for Pattern Recognition. Wiley, New York.

    Google Scholar 

  • Verhaegen, G., K. von Jungmeister & M. Haase, 2020. Life history variation in space and time: environmental and seasonal responses of a parthenogenetic invasive freshwater snail in northern Germany. Hydrobiologia. DOI: 10.1007/s10750-020-04333-8

    Article  Google Scholar 

  • Wiens, J. J. & C. H. Graham, 2005. Niche conservatism: integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution, and Systematics 36: 519-539.

    Article  Google Scholar 

  • Woodward, A., G. Lindsay & S. Singh, 2011. Adapting to climate change to sustain health. WIREs Climate Change 2: 271–282.

    Article  Google Scholar 

  • Xu, M., 2015. Distribution and spread of Limnoperna fortunei in China. In: Boltovskoy, D. (ed) Limnoperna fortunei: The Ecology, Distribution and Control of a Swiftly Spreading Invasive Fouling Mussel, Springer, Cham (Switzerland), pp 313-320.

    Google Scholar 

Download references

Acknowledgements

We would like to thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for granting DKP postdoctoral funding (PDJ/CNPq, no 409077/2017-8) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/MEC) for granting MMP and TM PhD scholarships. LGR thanks the support from the National Institutes for Science and Technology (INCT) in Ecology, Evolution and Biodiversity Conservation (EECBio), founded by MCTIC/CNPq (Grant #465610/2014-5) and FAPEG (proc. 201810267000023). We would also like to thank Yuri Zubek for helping in the search for geographic coordinates of the zebra mussel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielle Katharine Petsch.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Katya E. Kovalenko, Fernando M. Pelicice, Lee B. Kats, Jonne Kotta & Sidinei M. Thomaz / Aquatic Invasive Species III

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petsch, D.K., Ribas, L.G., Mantovano, T. et al. Invasive potential of golden and zebra mussels in present and future climatic scenarios in the new world. Hydrobiologia 848, 2319–2330 (2021). https://doi.org/10.1007/s10750-020-04412-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04412-w

Keywords

Navigation