Skip to main content

Advertisement

Log in

Anatomy of a Recharge Magma: Hornblende Dacite Pumice from the rhyolitic Tshirege Member of the Bandelier Tuff, Valles Caldera, New Mexico, USA

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The 1.26 Ma Tshirege Member of the Bandelier Tuff is the second of two major (~ 400 km3, dense rock equivalent) compositionally zoned rhyolitic eruptions from the Valles caldera. Here we analyze 25 samples of a minor component of compositionally and texturally variable silicic dacite pumice (~ 67 to 72% SiO2) that is widely distributed through the unit. The dacite has a phenocryst assemblage dominated by feldspar and hornblende and is presumed to be a recharge magma. Quenching of dacite against cooler rhyolite, melting of rhyolitic crystal mush, and mixing between dacite and rhyolite contributed to textural complexity. The dacite can be broken into three petrographic pumice types resulting from different degrees of dacite–rhyolite interaction. The earliest stage in the history of the dacite discernable from mineral chemistry, thermobarometry and hygrometry is mid-crustal storage at temperatures close to 900 °C and water content ~ 5 wt%. Plagioclase zoning suggests that the dacite was subject to more mafic recharge at this stage. The dacite was then injected into rhyolitic crystal mush at temperatures between 700 and 800 °C and pressures ~ 0.3 GPa. Consequences of mixing with mushy rhyolite include the following: (1) cooling and partial crystallization of dacite; (2) growth of large, dendritic feldspars with ternary compositions; (3) ingestion of and melting of feldspar and quartz from the rhyolitic mush; (4) enrichment in fluorine due to melting of biotite in the mush; (5) enrichment in light REE contents in some samples due to melting of chevkinite-rich domain(s) in the mush; (6) second boiling of quenched dacite rendering it buoyant and distributing dacite ‘enclaves’ through the zoned rhyolite magma column. The dacite was likely injected into the rhyolite over a protracted period and eventually triggered the Tshirege eruption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

Supplementary data in online resource file.

Code availability

Not applicable.

References

  • Aiuppa A, Baker DR, Webster JD (2009) Halogens in volcanic systems. Chem Geol 263:1–18

    Google Scholar 

  • Allan ASR, Barker SJ, Millet M-A, Morgan DJ, Rooyakkers SM, Schipper CI, Wilson CJN (2017) A cascade of magmatic events during the assembly and eruption of a super-sized magma body. Contrib Mineral Petrol 172:33–49

    Google Scholar 

  • Bachmann O, Bergantz GW (2004) On the origin of crystal-poor rhyolites: extracted from batholithic crystal mushes. J Petrol 45–8:1565–1582. https://doi.org/10.1016/j.lithos.2015.05.008

    Article  Google Scholar 

  • Bachmann O, Bergantz GW (2008) The magma reservoirs that feed supereruptions. Elements 4:17–21. https://doi.org/10.2113/GSELEMENTS.4.1.17

    Article  Google Scholar 

  • Bachmann O, Dungan MA, Lipman PW (2002) The Fish Canyon magma body, San Juan volcanic field, Colorado: rejuvenation and eruption of an upper crustal batholith. J Petrol 43:1469–1503

    Google Scholar 

  • Bachmann O, Deering CD, Lipman PW, Plummer C (2014) Building zoned ignimbrites by recycling silicic cumulates: insight from the 1,000 km3 Carpenter Ridge Tuff, CO. Contrib Mineral Petrol 167(1025):13

    Google Scholar 

  • Bacon CR (1986) Magmatic inclusions in silicic and intermediate volcanic rocks. J Geophys Res 91:6091–6112

    Google Scholar 

  • Bacon CR, Druitt TH (1988) Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contrib Mineral Petrol 98:224–256

    Google Scholar 

  • Bacon CR, Hirschmann MM (1988) Mg/Mn partitioning as a test for equilibrium between coexisting Fe–Ti oxides. Am Min 73:57–61

    Google Scholar 

  • Bailey RA, Smith RL, Ross CS (1969) Stratigraphic nomenclature of volcanic rocks in the Jemez Mountains, New Mexico. US Geol Surv Bull 1274:1–19

    Google Scholar 

  • Balsley SD (1988) The petrology and geochemistry of the Tshirege Member of the Bandelier Tuff, Jemez Mountains volcanic field, New Mexico, U.S.A: M.S. thesis, University of Texas at Arlington

  • Blundy J, Cashman C (2001) Ascent-driven crystallization of dacite magmas at Mount St Helens, 1980–1986. Contrib Min Petrol 140–6:631–650

    Google Scholar 

  • Boro JR (2019) Recharge and mobilization of crystal much to produce and erupt a zoned magma chamber—the Tshirege Member of the Bandelier tuff, Valles Caldera, New Mexico, USA. Doctoral Dissertation. Washington State University, 239 pp.

  • Boro JR, Wolff JA, Neill OK, Steiner AR, Ramos FC (2020) Titanium diffusion profiles and melt inclusion chemistry and morphology in quartz from the Tshirege Member of the Bandelier Tuff. Am Min 105: in press.

    Google Scholar 

  • Brookins DG, Laughlin AW (1983) Rb/Sr geochronologic investigation of Precambrian samples from deep geothermal drill holes, Fenton Hill, New Mexico. J Volc Geotherm Res 15:43–58

    Google Scholar 

  • Buddington AF, Lindsley DH (1964) Iron-titanium oxide minerals and synthetic equivalents. J Pet 5:310–357

    Google Scholar 

  • Chamberlain KJ, Morgan DJ, Wilson CJN (2014) Timescales of mixing and mobilization in the Bishop Tuff magma body: perspectives from diffusion chronometry. Contrib Mineral Petrol 168(1034):24

    Google Scholar 

  • Coleman DS, Gray W, Glazner AF (2004) Rethinking the emplacement and evolution of zoned plutons: Geochronologic evidence for incremental assembly of the Tuolomne Intrusive Suite, California. Geology 32:433–436

    Google Scholar 

  • Cook GW, Wolff JA, Self S (2016) Estimating the eruptive volume of a large pyroclastic body: the Otowi Member of the Bandelier Tuff, Valles caldera, New Mexico. Bull Volcanol 76:10–11. https://doi.org/10.1007/s00445-016-1000-0

    Article  Google Scholar 

  • de Silva SL, Gregg PM (2014) Thermomechanical feedbacks in magmatic systems: implications for growth, longevity, and evolution of large caldera-forming magma reservoirs and their supereruptions. J Volc Geotherm Res 282:77–91. https://doi.org/10.1016/j.jvolgeores.2014.06.001

    Article  Google Scholar 

  • de Silva S, Salas G, Schubring S (2008) Triggering explosive eruptions—the case for silicic magma recharge at Huaynaputina, southern Peru. Geology 36 (5):387-390. https://doi.org/10.1130/g24380a.1

    Article  Google Scholar 

  • Deering CD, Bachmann O (2010) Trace element indicators of crystal accumulation in silicic igneous rocks. Earth Planet Sci Lett 297:324–331. https://doi.org/10.1016/j.epsl.2010.06.034

    Article  Google Scholar 

  • Deering CE, Bachmann O, Dufek J, Gravley DM (2011) Rift-related transition from andesite to rhyolite volcanism in the Taupo Volcanic Zone (New Zealand) controlled by crystal–melt dynamics in mush zones with variable mineral assemblages. J Petrol 52(11):2243–2263. https://doi.org/10.1093/petrology/egr046

    Article  Google Scholar 

  • Deering CD, Keller B, Schoene B, Bachmann O, Beane R, Octcharova M (2016) Zircon record of the plutonic–volcanic connection and protracted rhyolite melt evolution. Geology 44:263–266

    Google Scholar 

  • Ebadi A, Johannes W (1991) Beginning of melting composition of first melts in the system Qz–Ab–Or–H2O–CO2. Contrib Min Petrol 106(3):286–295

    Google Scholar 

  • Eichelberger JC, Koch FG (1979) Lithic fragments in the Bandelier Tuff, Jemez Mountains, New Mexico. J Volc Geotherm Res 5:115–134

    Google Scholar 

  • Foley ML, Miller CF, Gualda GAR (2020) Architecture of a super-sized magma chamber and remobilization of its basal cumulate (Peach Spring Tuff, USA). J Petrol. https://doi.org/10.1093/petrology/egaa020

    Article  Google Scholar 

  • Forni F, Bachmann O, Mollo S, De Astis G, Gelman SE, Ellis BS (2016) The origin of a zoned ignimbrite: Insights into the Campanian Ignimbrite magma chamber (Campi Flegrei, Italy). Earth Planet Sci Lett 449:59–271

    Google Scholar 

  • Forni F, Petricca E, Bachmann O, Mollo S, De Astis G, Piochi M (2018) The role of magma mixing/mingling and cumulate melting in the Neapolitan Yellow Tuff caldera-forming eruption Campi Flegrei, southern Italy. Contrib Mineral Petrol 173(45):18

    Google Scholar 

  • Fuhrman ML, Lindsley DH (1988) Ternary-feldspar modeling thermometry. Am Min 73:201–215

    Google Scholar 

  • Gardner JN, Goff F, Garcia S, Hagan RC (1986) Stratigraphic relations lithologic variations in the Jemez volcanic field, New Mexico. J Geophys Res 91:1763–1778. https://doi.org/10.1029/JB091iB02p01763

    Article  Google Scholar 

  • Gardner JN, Goff F, Kelley SA, Jacobs E (2010) Rhyolites associated deposits of the Valles-Toledo caldera complex. New Mexico Geol 32:3–18

    Google Scholar 

  • Gelman SE, Gutierrez FJ, Bachmann O (2013) On the longevity of large upper crustal silicic magma reservoirs. Geology 41:7. https://doi.org/10.1130/G34241.1

    Article  Google Scholar 

  • Ghiorso MS, Evans BW (2008) Thermodynamics of rhombohedral oxide solid solutions and a revision of the Fe–Ti two-oxide geothermometer and oxygen-barometer. Am J Sci 308:957–1039. https://doi.org/10.2475/09.2008.01

    Article  Google Scholar 

  • Ginibre C, Wörner G, Kronz A (2002) Minor- and trace-element zoning in plagioclase: implications for magma chamber processes at Parinacota volcano, northern Chile. Contrib Min Petrol 143(3):300–315. https://doi.org/10.1007/s00410-002-0351-z

    Article  Google Scholar 

  • Goff F, Gardner JN (2004) Late Cenozoic geochronology of volcanism and mineralization in the Jemez Mountains and Valles caldera, north central New Mexico. In: The geology of New Mexico, a geologic history. New Mexico Geol Soc Spec Pub 11:295–312. 

    Google Scholar 

  • Goff F, Gardner JN, Baldridge WS, Hulen JB, Nielson DL, Vaniman D, Heiken G, Dungan MA, Broxton D (1989) Excursion 17B: Volcanic hydrothermal evolution of Valles Caldera Jemez volcanic field. New Mexico Bur Mines Min Resour Mem 46:381–434

    Google Scholar 

  • Goff F, Gardner JN, Reneau SL, Kelley SA, Kepter KA, Lawrence JR (2011) Geologic map of the Valles caldera, Jemez Mountains, New Mexico. New Mexico Bur Mines Min Resour Geol Map 79: scale 1:50,000.

    Google Scholar 

  • Goff F, Warren RG, Goff CJ, Dunbar N (2014) Eruption of reverse-zoned upper Tshirege member, Bandelier Tuff from centralized vents within Valles caldera, New Mexico. J Volc Geotherm Res 276:82–104. https://doi.org/10.1016/j.jvolgeores.2014.02.018

    Article  Google Scholar 

  • Gualda GAR, Ghiorso MS, Lemons RV, Carley TL (2012) Rhyolite-MELTS:a Modified Calibration of MELTS Optimized for Silica-rich, Fluid-bearing Magmatic Systems. J Pet 53(5):875–890. https://doi.org/10.1093/petrology/egr080

    Article  Google Scholar 

  • Hawthorne FC, Oberti R, Harlow GE, Maresch WV, Martin RF, Schumacher JC, Welch MD (2012) Nomenclature of the amphibole supergroup. Am Mineral 97(11–12):2031–2048. https://doi.org/10.2138/am.2012.4276

    Article  Google Scholar 

  • Heiken G (1986) Introduction to the special section on the Valles caldera the Jemez Mountains volcanic field. J Geophys Res 91:1741. https://doi.org/10.1029/JB091iB02p01741

    Article  Google Scholar 

  • Hildreth W (1979) The Bishop Tuff: evidence for the origin of compositional zonation in silicic magma chambers. Geol Soc Am Spec Pap 180:43–75

    Google Scholar 

  • Hildreth W (1981) Gradients in silicic magma chambers: implications for lithospheric magmatism. J Geophys Res 86:10153–10192

    Google Scholar 

  • Hildreth W (2004) Volcanological perspectives on Long Valley, Mammoth Mountain, Mono Craters: several contiguous but discrete systems. J Volcanol Geotherm Res 136:169–198. https://doi.org/10.1016/j.jvolgeores.2004.05.019

    Article  Google Scholar 

  • Hildreth W, Wilson CJN (2007) Compositional zoning of the Bishop Tuff. J Petrol 48:951–999. https://doi.org/10.1093/petrology/egm007

    Article  Google Scholar 

  • Iveson AA, Webster JD, Rowe MC, Neill OK (2017) Major element halogen (F, Cl) mineral-melt-fluid partitioning in hydrous rhyodacitic melts at shallow crustal conditions. J Petrol 58:2465–2492. https://doi.org/10.1093/petrology/egy011

    Article  Google Scholar 

  • Izbekov PE, Eichelberger JC, Ivanov BV (2004) The 1996 eruption of Karymsky volcano, Kamchatka: historical record of basaltic replenishment of an andesite reservoir. J Petrol 45(11):2325–2345

    Google Scholar 

  • Jacobs EP, WoldeGabriel G, Kelley SA, Broxton D, Ridley J (2016) Volcanism and sedimentation along the western margin of the Rio Grande rift between caldera-forming eruptions of the Jemez Mountains volcanic field, north-central New Mexico, USA. J Volcanol Geotherm Res 327:416–435

    Google Scholar 

  • Jercinovic MJ, Williams ML, Allaz J, Donovan JJ (2012) Trace analysis in EPMA. IOP Conf Ser Mater Sci Eng 32:012012. https://doi.org/10.1088/1757-899X/32/1/012012

    Article  Google Scholar 

  • Jezek PA, Noble DC (1978) Natural hydration and ion exchange of obsidian: an electron microprobe study. Am Miner 63:266–273

    Google Scholar 

  • Karakas O, Degruyter W, Bachmann O, Dufek J (2017) Lifetime size of shallow magma bodies controlled by crustal-scale magmatism. Nat Geosci 10:446–450

    Google Scholar 

  • Karlstrom KE, Ã…häll K, Harlan SS, Williams ML, McLelland J, Geissman JW (2001) Long-lived (1.8–1.0 Ga) convergent orogen in southern Laurentia, its extensions to Australia and Baltica, and implications for refining Rodinia. Precambrian Res 111:5–30. https://doi.org/10.1016/S0301-9268(01)00154-1

    Article  Google Scholar 

  • Kelley SA, McIntosh WC, Goff F, Kempter KA, Wolff JA, Esser R, Brashayko S, Love D, Gardner JN (2013) Spatial temporal trends in pre-caldera Jemez Mountains volcanic fault activity. Geosphere 9:614–646. https://doi.org/10.1130/GES00897.1

    Article  Google Scholar 

  • Kern JM, de Silva SL, Schmitt AK, Kaiser JF, Iriarte AR, Economos R (2016) Geochronological imaging of an episodically constructed subvolcanic batholith: U–Pb in zircon chronochemistry of the Altiplano-Puna Volcanic complex of the Central Andes. Geosphere 12:1054–1077

    Google Scholar 

  • Laughlin AW, Eddy AC, Laney R, Aldrich MJ (1983) Geology of the Fenton Hill, New Mexico, hot dry rock site. J Volc Geotherm Res 15:21–41. https://doi.org/10.1016/0377-0273(83)90094-X

    Article  Google Scholar 

  • Lindsay JM, Schmitt AK, Trumbull RB, de Silva SL, Siebel W, Emmermann R (2001) Magmatic evolution of the La Pacana Caldera System, Central Andes, Chile: compositional variation of two cogenetic, large-volume Felsic Ignimbrites. J Pet 42(3):459–486. https://doi.org/10.1093/petrology/42.3.459

    Article  Google Scholar 

  • Luth WC, Jahns RH, Tuttle FO (1964) The granite system at pressures of 4 to 10 kilobars. J Geophys Res 69:1896–1977. https://doi.org/10.1029/JZ069i004p00759

    Article  Google Scholar 

  • Magnani MB, Miller KC, Levander A, Karlstrom K (2004) The Yavapai-Mazatzal boundary: a long-lived tectonic element in the lithosphere of southwestern North America. Geol Soc Am Bull 116:1137–1142. https://doi.org/10.1130/B25414.1

    Article  Google Scholar 

  • McDonough WF, Sun S-S (1995) Composition of the Earth. Chem Geol 120:223–253. https://doi.org/10.1016/0009-2541(94)00140-4

    Article  Google Scholar 

  • Phillips EH, Goff F, Kyle PR, McIntosh WC, Dunbar NW, Gardner JN (2007) The 40Ar/39Ar age constraints on the duration of resurgence at the Valles caldera, New Mexico. J Geophys Res 112:B08201. https://doi.org/10.1029/2006JB004511

    Article  Google Scholar 

  • Putirka K (2016) Amphibole thermometers barometers for igneous systems some implications for eruption mechanisms of felsic magmas at arc volcanoes. Am Min 101:841–859. https://doi.org/10.2138/am-2016-5506

    Article  Google Scholar 

  • Reid MR, Vasquez JA (2017) Fitful and protracted magma assembly leading to a giant eruption, Toungest Toba Tuff, Indonesia. Geochem Geophys Geosyst 18:156–177

    Google Scholar 

  • Ross CS, Smith RL (1961) Ash-flow tuffs: their origin, geologic relations, identification. US Geol Surv Profession Pap 366:1–81

    Google Scholar 

  • Rowe MC, Wolff JA, Gardner JN, Ramos FC, Teasdale R, Heikoop CE (2007) Development of a continental volcanic field: petrogenesis of pre-caldera intermediate silicic rocks origin of the Bandelier magmas, Jemez Mountains (New Mexico, USA). J Petrol 48:2063–2091. https://doi.org/10.1093/petrology/egm050

    Article  Google Scholar 

  • Sauerzapf U, Lattard D, Burchard M, Engelmann R (2008) The titanomagnetite-ilmenite equilibrium: new experimental data and thermo-oxybarometric application to the crystallization of basic to intermediate rocks. J Pe 49(6):1161–1185. https://doi.org/10.1093/petrology/egn021

    Article  Google Scholar 

  • Self S, Goff F, Gardner J, Wright J, Kite W (1986) Explosive rhyolitic volcanism in the Jemez Mountains: Vent locations, caldera development relation to regional structure. J Geophys Res 91:1779–1798. https://doi.org/10.1029/JB091iB02p01779

    Article  Google Scholar 

  • Self S, Heiken G, Sykes ML, Wohletz K, Fisher RV, Dethier DP (1996) Field excursions to the Jemez Mountains, New Mexico. Bull New Mexico Bur Mines Min Resour 134:72

    Google Scholar 

  • Shane P, Nairn IA, Smith VC, Darragh M, Beggs K, Cole JW (2008) Silicic recharge of multiple rhyolite magmas by basaltic intrusion during the 22.6 ka Okareka Eruption Episode, New Zealand. Lithosphere 103(3–4):527–549. https://doi.org/10.1016/j.lithos.2007.11.002

    Article  Google Scholar 

  • Shaw CA, Karlstrom KE (1999) The Yavapai-Mazatzal crustal boundary in the southern Rocky Mountains. Rock Mt Geol 34:37–52. https://doi.org/10.2113/34.1.37

    Article  Google Scholar 

  • Shea T, Hammer JE (2013) Kinetics of cooling- and decompression-induced crystallization in hydrous mafic-intermediate magmas. J Volc Geotherm Res 260:127–145. https://doi.org/10.1016/j.jvolgeores.2013.04.018

    Article  Google Scholar 

  • Smith RL (1979) Ash-flow magmatism. Geol Soc Am Spec Pap 180:5–27

    Google Scholar 

  • Smith RL, Bailey RA (1966) The Bandelier Tuff—a study of ash-flow eruption cycles from zoned magma chambers. Bull Volcanol 29:83–104

    Google Scholar 

  • Sparks RSJ, Sigurdsson H, Wilson L (1977) Magma mixing: a mechanism for triggering acid explosive eruptions. Nature 267:315–318

    Google Scholar 

  • Stimac JA (1996)Hornblende-dacite pumice in the Tshirege member of the Bandelier Tuff: implications for magma chamber eruptive processes. New Mexico Geological Society, 47th field conference guidebook, pp 269–274

  • Stix J, Goff F, Gorton MP, Heiken G, Garcia SR (1988) Restoration of compositional zonation in the Bandelier silicic magma chamber between two caldera-forming eruptions: geochemistry origin of the Cerro Toledo Rhyolite, Jemez Mountains, New Mexico. J Geophys Res 93:6129–6147. https://doi.org/10.1029/JB093iB06p06129

    Article  Google Scholar 

  • Truesdell AH (1966) Ion-exchange constants of natural glasses by the electrode method. Am Miner 51:110–122

    Google Scholar 

  • Tuttle OF, Bowen NL (1958) Origin of granite in the light of experimental studies in the system NaAlSi3O8–KalSi3O8–SiO2–H2O. Geol Soc Am Memoir 74:153. https://doi.org/10.1130/MEM74-p1

    Article  Google Scholar 

  • Venezky DY, Rutherford MJ (1999) Petrology and Fe–Ti oxide reequilibration of the 1991 Mount Unzen mixed magma. J Volcan Geotherm Res 89:213–230

    Google Scholar 

  • Vernon RH (1990) Crystallization and hybridism in microgranitoid enclave magmas: microstructural evidence. J Geophys Res 95:17849–17859

    Google Scholar 

  • Warren RG, Goff F, Kluk EC, Budahn JR (2007) Petrography, chemistry, mineral compositions for subunits of the Tshirege Member, Bandelier Tuff, within the Valles caldera Pajarito Plateau: New Mexico Geological Society, 58th field conference guidebook, pp 316–332

  • Warshaw CM, Smith RL (1988) Pyroxenes and fayalites in the Bandelier Tuff, New Mexico: temperatures and comparison with other rhyolites. Am Min 73:1025–1037

    Google Scholar 

  • Waters LE, Lange RA (2015) An updated calibration of the plagioclase-liquid hygrometer-thermometer applicable to basalts through rhyolites. Am Min 100(10):2172–2184. https://doi.org/10.2138/am-2015-5232

    Article  Google Scholar 

  • White SM, Crisp JA, Spera FJ (2006) Long-term volumetric eruption rates and magma budgets. Geochem Geophys Geosyst 7:20. https://doi.org/10.1029/2005GC001002

    Article  Google Scholar 

  • Wilcock J, Goff F, Minarik WG, Stix J (2013) Magmatic recharge during formation resurgence of the Valles caldera, New Mexico, USA: evidence from quartz compositional zoning geothermometry. J Petrol 54:635–664. https://doi.org/10.1093/petrology/egs078

    Article  Google Scholar 

  • Woldegabriel G, Koning DJ, Broxton D, Warren RG (2013) Chronology of volcanism, tectonics, and sedimentation near the western boundary fault of the Española basin, Rio Grande rift, New Mexico. In: Hudson MR, Grauch VJS (eds) New perspectives on Rio Grande Rift Basins: from tectonics to groundwater: Geological Society of America Special Paper 494, pp 221–238

  • Wolff JA, Ramos FC (2014) Processes in caldera-forming high-silica rhyolite magma: Rb–Sr and Pb isotope systematics of the Otowi Member of the Bandelier Tuff, Valles Caldera, New Mexico, USA. J Petrol 55:345–375. https://doi.org/10.1093/petrology/egt070

    Article  Google Scholar 

  • Wolff JA, Rowe MC, Teasdale R, Gardner JN, Ramos FC, Heikoop CE (2005) Petrogenesis of pre-caldera mafic lavas, Jemez Mountains Volcanic Field (New Mexico, U.S.A). J Petrol 46:407–439. https://doi.org/10.1093/petrology/egh082

    Article  Google Scholar 

  • Wolff JA, Ellis BS, Ramos FC, Starkel WA, Boroughs S, Olin PH, Bachmann O (2015) Remelting of cumulates as a process for producing chemical zoning in silicic tuffs: a comparison of cool, wet hot, dry rhyolitic magma systems. Lithos 236–237:275–286. https://doi.org/10.1016/j.lithos.2015.09.002

    Article  Google Scholar 

  • Wolff JA, Forni F, Ellis BS, Szymanowski D (2020) Europium and barium enrichments in compositionally zoned felsic tuffs: a smoking gun for the origin of chemical and physical gradients by cumulate melting. Earth Planet Sci Lett 540:116251

    Google Scholar 

  • Wu J, Rowe MC, Cronin SJ, Wolff JA (2020) Mineralogical evidence of pre-caldera magma petrogenesis in the Jemez Mountains volcanic field, New Mexico, USA. J Petrol:egaa064 (in press)

  • Hammarstrom JM, Zen EA (1986) Aluminium in hornblende: an empirical igneous geobarometer. Am Mineral 71:1297–1313

    Google Scholar 

Download references

Acknowledgements

We thank Frank Ramos, Ren Thompson, Tom Shea, Peter Larson and Steve Self for discussion, and Arron Steiner, Ashley Steiner and Scott Boroughs for assistance in the laboratory. The paper was greatly improved following comments on a first draft by Madison Myers and Shan de Silva. This work was funded by NSF EAR-0810306 and Washington State University.

Funding

This work was funded by NSF EAR-0810306 and Washington State University.

Author information

Authors and Affiliations

Authors

Contributions

JB was responsible for writing, data collection, figure drafting, and interpretation of results. JW initiated and supervised the project and contributed to writing and interpretations. ON assisted in data collection, editing, and interpretations.

Corresponding author

Correspondence to Joseph R. Boro.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Communicated by Mark S Ghiorso.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 356 kb)

Supplementary file2 (DOCX 2873 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boro, J.R., Wolff, J.A. & Neill, O.K. Anatomy of a Recharge Magma: Hornblende Dacite Pumice from the rhyolitic Tshirege Member of the Bandelier Tuff, Valles Caldera, New Mexico, USA. Contrib Mineral Petrol 175, 96 (2020). https://doi.org/10.1007/s00410-020-01725-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-020-01725-w

Keywords

Navigation