Skip to main content
Log in

Current trends in the management of subependymal giant cell astrocytomas in tuberous sclerosis

  • Annual issue paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Introduction

The management of subependymal giant cells astrocytomas (SEGAs) has been traditionally represented by surgical treatment through an open craniotomic approach. Though open surgery still represents a major option in the management of this kind of tumors, the introduction of mTOR inhibitors in the clinical practice, technological advances in neuroendoscopy and the more recent use of laser interstitial therapy have significantly enlarged the range of available management opportunities.

Methods

A thorough review of the literature has been performed. Accordingly, current views in open surgical treatment, medical therapy, endoscopic tumor removal and new trends (such as laser interstitial thermal therapy) are discussed.

Results

The risk of significant neurological morbidity (5–50%) complicating open surgery has been for a long time representing a main drawback in the management of SEGAs. More recent series report a significant reduction of morbidity and mortality. The mTOR inhibitors have demonstrated efficacy in both warranting a tumor reduction by up to 60% of the tumor size and helping the control of seizures. However, the reported rate of side effects is as high as 30% and tumor recurrence is a documented occurrence at the time of mTOR inhibitor discontinuation. Endoscopic tumor removal has been more extensively considered an option due to the acquisition of new tools. Limits are still represented by tumor size (< 3 cm) and broad attachment of the tumor to the basal ganglia. Laser interstitial thermal therapy (LITT) is the more recently considered option. Though promising, only short follow-up is available so far, while data on medium- and long-term results of this treatment are completely lacking to date.

Conclusions

Surgical treatment remains a mainstay of the management of SEGAs. The indication for an open craniotomic approach should be balanced with an endoscopic tumor removal or LITT according to patient conditions, presence or not of an active hydrocephalus and extension of the attachment of the tumor to the basal ganglia. The mTOR inhibitors do have a definite role both as primary and as adjuvant treatment, but consistent limitations are represented up to now by a not negligible rate of complications and the uncertainties related to the possibility of tumor recurrence once the medical treatment is discontinued.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pascual-Castroviejo I, Pascual-Pascual SI, Velázquez-Fragua R, Viaño J, Carceller F, Hernández-Moneo JL, Gutiérrez-Molina M, Morales C (2010) Subependymal giant cell astrocytoma in tuberous sclerosis complex. A presentation of eight paediatric patients. Neurol Engl Ed 25(5):314–321

    CAS  Google Scholar 

  2. Moavero R, Romagnoli G, Graziola F, Curatolo P (2015) Mammalian target of rapamycin inhibitors and life-threatening conditions in tuberous sclerosis complex. Semin Pediatr Neurol 22(4):282–294

    PubMed  Google Scholar 

  3. Roth J, Roach ES, Bartels U, Jóźwiak S, Koenig MK, Weiner HL, Franz DN, Wang HZ (2013) Subependymal giant cell astrocytoma: diagnosis, screening, and treatment. Recommendations from the International Tuberous Sclerosis Complex Consensus Conference 2012. Pediatr Neurol 49(6):439–444

    PubMed  Google Scholar 

  4. Shepherd CW, Gomez MR, Lie JT, Crowson CS (1991) Causes of death in patients with tuberous sclerosis. Mayo Clin Proc 66(8):792–796

    CAS  PubMed  Google Scholar 

  5. Curatolo P, Bombardieri R, Jozwiak S (2008) Tuberous sclerosis. Lancet Lond Engl 372(9639):657–668

    CAS  Google Scholar 

  6. Hahn JS, Bejar R, Gladson CL (1991) Neonatal subependymal giant cell astrocytoma associated with tuberous sclerosis: MRI, CT, and ultrasound correlation. Neurology 41(1):124–128

    CAS  PubMed  Google Scholar 

  7. Ouyang T, Zhang N, Benjamin T, Wang L, Jiao J, Zhao Y, Chen J (2016) Retraction note to: Subependymal giant cell astrocytoma: current concepts, management, and future directions. Childs Nerv Syst 32(4):761–761

    Google Scholar 

  8. Curatolo P (2015) Mechanistic target of rapamycin (mTOR) in tuberous sclerosis complex-associated epilepsy. Pediatr Neurol 52(3):281–289

    PubMed  Google Scholar 

  9. Dabora SL, Jozwiak S, Franz DN, Roberts PS, Nieto A, Chung J, Choy YS, Reeve MP, Thiele E, Egelhoff JC, Kasprzyk-Obara J, Domanska-Pakiela D, Kwiatkowski DJ (2001) Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. Am J Hum Genet 68(1):64–80

    CAS  PubMed  Google Scholar 

  10. Jóźwiak S, Mandera M, Młynarski W (2015) Natural history and current treatment options for subependymal giant cell astrocytoma in tuberous sclerosis complex. Semin Pediatr Neurol 22(4):274–281

    PubMed  Google Scholar 

  11. Katz JS, Milla SS, Wiggins GC, Devinsky O, Weiner HL, Roth J (2012) Intraventricular lesions in tuberous sclerosis complex: a possible association with the caudate nucleus. J Neurosurg Pediatr 9(4):406–413

    PubMed  Google Scholar 

  12. Dracham CB, Shankar A, Madan R (2018) Radiation induced secondary malignancies: a review article. Radiat Oncol J 36(2):85–94

    PubMed  PubMed Central  Google Scholar 

  13. Kumar S (2012) Second malignant neoplasms following radiotherapy. Int J Environ Res Public Health 9(12):4744–4759

    PubMed  PubMed Central  Google Scholar 

  14. Beaumont TL, Limbrick DD, Smyth MD (2012) Advances in the management of subependymal giant cell astrocytoma. Childs Nerv Syst 28(7):963–968

    PubMed  Google Scholar 

  15. Fohlen M, Ferrand-Sorbets S, Delalande O, Dorfmüller G (2018) Surgery for subependymal giant cell astrocytomas in children with tuberous sclerosis complex. Childs Nerv Syst 34(8):1511–1519

    PubMed  Google Scholar 

  16. Giordano F, Moscheo C, Lenge M, Biagiotti R, Mari F, Sardi I, Buccoliero AM, Mongardi L, Aronica E, Guerrini R, Genitori L (2019) Neurosurgical treatment of subependymal giant cell astrocytomas in tuberous sclerosis complex: a series of 44 surgical procedures in 31 patients. Childs Nerv Syst. 36:951–960. https://doi.org/10.1007/s00381-019-04449-w

    Article  PubMed  Google Scholar 

  17. Harter DH, Bassani L, Rodgers SD, Roth J, Devinsky O, Carlson C, Wisoff JH, Weiner HL (2014) A management strategy for intraventricular subependymal giant cell astrocytomas in tuberous sclerosis complex. J Neurosurg Pediatr 13(1):21–28

    PubMed  Google Scholar 

  18. Kotulska K, Borkowska J, Mandera M, Roszkowski M, Jurkiewicz E, Grajkowska W, Bilska M, Jóźwiak S (2014) Congenital subependymal giant cell astrocytomas in patients with tuberous sclerosis complex. Childs Nerv Syst 30(12):2037–2042

    PubMed  PubMed Central  Google Scholar 

  19. Amin S, Carter M, Edwards RJ, Pople I, Aquilina K, Merrifield J, Osborne JP, O’Callaghan FJK (2013) The outcome of surgical management of subependymal giant cell astrocytoma in tuberous sclerosis complex. Eur J Paediatr Neurol 17(1):36–44

    PubMed  Google Scholar 

  20. Jiang T, Jia G, Ma Z, Luo S, Zhang Y (2011) The diagnosis and treatment of subependymal giant cell astrocytoma combined with tuberous sclerosis. Childs Nerv Syst 27(1):55–62

    CAS  PubMed  Google Scholar 

  21. de Ribaupierre S, Dorfmüller G, Bulteau C, Fohlen M, Pinard J-M, Chiron C, Delalande O (2007) Subependymal giant-cell astrocytomasin pediatric tuberous sclerosis disease. Neurosurgery 60(1):83–90

    PubMed  Google Scholar 

  22. Cuccia V, Zuccaro G, Sosa F, Monges J, Lubienieky F, Taratuto AL (2003) Subependymal giant cell astrocytoma in children with tuberous sclerosis. Childs Nerv Syst 19(4):232–243

    PubMed  Google Scholar 

  23. Di Rocco C, Iannelli A, Marchese E (1995) On the treatment of subependymal giant cell astrocytomas and associated hydrocephalus in tuberous sclerosis. Pediatr Neurosurg 23(3):115–121

    PubMed  Google Scholar 

  24. Sinson G, Sutton LN, Yachnis AT, Duhaime A-C, Schut L (1994) Subependymal giant cell astrocytomas in children. Pediatr Neurosurg 20(4):233–239

    CAS  PubMed  Google Scholar 

  25. Jansen AC, Belousova E, Benedik MP, Carter T, Cottin V, Curatolo P, D'Amato L, Beaure d'Augères G, de Vries PJ, Ferreira JC, Feucht M, Fladrowski C, Hertzberg C, Jozwiak S, Lawson JA, Macaya A, Marques R, Nabbout R, O'Callaghan F, Qin J, Sander V, Sauter M, Shah S, Takahashi Y, Touraine R, Youroukos S, Zonnenberg B, Kingswood JC (2019) Newly diagnosed and growing subependymal giant cell astrocytoma in adults with tuberous sclerosis complex: results from the international TOSCA study. Front Neurol 10:821

    PubMed  PubMed Central  Google Scholar 

  26. Northrup H, Krueger DA, International Tuberous Sclerosis Complex Consensus Group (2013) Tuberous sclerosis complex diagnostic criteria update: recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatr Neurol 49(4):243–254

    PubMed  PubMed Central  Google Scholar 

  27. Frèrebeau P, Benezech J, Segnarbieux F, Harbi H, Desy A, Marty-Double C (1985) Intraventricular tumors in tuberous sclerosis. Childs Nerv Syst 1(1):45–48

    PubMed  Google Scholar 

  28. Koenig MK, Butler IR, Northrup H (2008) Regression of subependymal giant cell astrocytoma with rapamycin in tuberous sclerosis complex. J Child Neurol. 23:1238–1239. https://doi.org/10.1177/0883073808321764

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kumar R, Singh V (2004) Subependymal giant cell astrocytoma: a report of five cases. Neurosurg Rev. 27:274–280. https://doi.org/10.1007/s10143-004-0339-4

    Article  PubMed  Google Scholar 

  30. Sun P, Kohrman M, Liu J, Guo A, Rogerio J, Krueger D (2012) Outcomes of resecting subependymal giant cell astrocytoma (SEGA) among patients with SEGA-related tuberous sclerosis complex: a national claims database analysis. Curr Med Res Opin 28(4):657–663

    PubMed  Google Scholar 

  31. Franz DN (2011) Everolimus: an mTOR inhibitor for the treatment of tuberous sclerosis. Expert Rev Anticancer Ther 11(8):1181–1192

    CAS  PubMed  Google Scholar 

  32. Faivre S, Kroemer G, Raymond E (2006) Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov 5(8):671–688

    CAS  PubMed  Google Scholar 

  33. Krueger DA, Care MM, Holland K, Agricola K, Tudor C, Mangeshkar P, Wilson KA, Byars A, Sahmoud T, Franz DN (2010) Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N Engl J Med 363(19):1801–1811

    CAS  PubMed  Google Scholar 

  34. Curatolo P, Nabbout R, Lagae L, Aronica E, Ferreira JC, Feucht M, Hertzberg C, Jansen AC, Jansen F, Kotulska K, Moavero R, O'Callaghan F, Papavasiliou A, Tzadok M, Jóźwiak S (2018) Management of epilepsy associated with tuberous sclerosis complex: updated clinical recommendations. Eur J Paediatr Neurol 22(5):738–748

    PubMed  Google Scholar 

  35. Franz D (2013) Everolimus in the treatment of subependymal giant cell astrocytomas, angiomyolipomas, and pulmonary and skin lesions associated with tuberous sclerosis complex. Biol Targets Ther 7:211

    CAS  Google Scholar 

  36. French JA, Lawson JA, Yapici Z, Ikeda H, Polster T, Nabbout R, Curatolo P, de Vries PJ, Dlugos DJ, Berkowitz N, Voi M, Peyrard S, Pelov D, Franz DN (2016) Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): a phase 3, randomised, double-blind, placebo-controlled study. The Lancet 388(10056):2153–2163

    CAS  Google Scholar 

  37. Moavero R, Carai A, Mastronuzzi A, Marciano S, Graziola F, Vigevano F, Curatolo P (2017) Everolimus alleviates obstructive hydrocephalus due to subependymal giant cell astrocytomas. Pediatr Neurol 68:59–63

    PubMed  Google Scholar 

  38. Hallett L, Foster T, Liu Z, Blieden M, Valentim J (2011) Burden of disease and unmet needs in tuberous sclerosis complex with neurological manifestations: systematic review. Curr Med Res Opin 27(8):1571–1583

    PubMed  Google Scholar 

  39. Tiberio D, Franz DN, Phillips JR (2011) Regression of a cardiac rhabdomyoma in a patient receiving everolimus. PEDIATRICS 127(5):e1335–e1337

    PubMed  Google Scholar 

  40. Cardamone M, Flanagan D, Mowat D, Kennedy SE, Chopra M, Lawson JA (2014) Mammalian target of rapamycin inhibitors for intractable epilepsy and subependymal giant cell astrocytomas in tuberous sclerosis complex. J Pediatr 164(5):1195–1200

    CAS  PubMed  Google Scholar 

  41. Cohen AR (1993) Endoscopic ventricular surgery. Pediatr Neurosurg 19(3):127–134

    CAS  PubMed  Google Scholar 

  42. Jallo GI, Morota N, Abbott R (1996) Introduction of a second working portal for neuroendoscopy. Pediatr Neurosurg 24(2):56–60

    CAS  PubMed  Google Scholar 

  43. Gaab MR, Schroeder HWS (1998) Neuroendoscopic approach to intraventricular lesions. J Neurosurg 88(3):496–505

    CAS  PubMed  Google Scholar 

  44. Esposito F, Di Rocco F, Zada G, Cinalli G, Schroeder HWS, Mallucci C, Cavallo LM, Decq P, Chiaramonte C, Cappabianca P (2013) Intraventricular and skull base neuroendoscopy in 2012: a global survey of usage patterns and the role of intraoperative neuronavigation. World Neurosurg 80(6):709–716

    PubMed  Google Scholar 

  45. Hidalgo ET, Ali A, Weiner HL, Harter DH (2016) Resection of intraventricular tumors in children by purely endoscopic means. World Neurosurg 87:372–380

    PubMed  Google Scholar 

  46. Cinalli G, Imperato A, Mirone G, Di Martino G, Nicosia G, Ruggiero C, Aliberti F, Spennato P (2017) Initial experience with endoscopic ultrasonic aspirator in purely neuroendoscopic removal of intraventricular tumors. J Neurosurg Pediatr 19(3):325–332

    PubMed  Google Scholar 

  47. Mohanty A, Thompson BJ, Patterson J (2013) Initial experience with endoscopic side cutting aspiration system in pure neuroendoscopic excision of large intraventricular tumors. World Neurosurg 80(5):655.e15–655.e21

    Google Scholar 

  48. Oka K, Co Y, Yamamoto M, Kumate S, Tomonaga M (1999) Experience with an ultrasonic aspirator in neuroendoscopy. Min - Minim Invasive Neurosurg 42(01):32–34

    CAS  PubMed  Google Scholar 

  49. Rodgers SD, Bassani L, Weiner HL, Harter DH (2012) Stereotactic endoscopic resection and surgical management of a subependymal giant cell astrocytoma. J Neurosurg Pediatr 9(4):417–420

    PubMed  Google Scholar 

  50. Cai R, Di X (2010) Combined intra- and extra-endoscopic techniques for aggressive resection of subependymal giant cell astrocytomas. World Neurosurg 73(6):713–718

    PubMed  Google Scholar 

  51. Engh JA, Lunsford LD, Amin DV, Ochalski PG, Fernandez-Miranda J, Prevedello DM, Kassam AB (2010) Stereotactically guided endoscopic port surgery for intraventricular tumor and colloid cyst resection. Oper Neurosurg 67(3):ons198–ons205

    Google Scholar 

  52. Dadey DYA, Kamath AA, Leuthardt EC, Smyth MD (2016) Laser interstitial thermal therapy for subependymal giant cell astrocytoma: technical case report. Neurosurg Focus 41(4):E9

    PubMed  Google Scholar 

  53. Tovar-Spinoza Z, Ziechmann R, Zyck S (2018) Single and staged laser interstitial thermal therapy ablation for cortical tubers causing refractory epilepsy in pediatric patients. Neurosurg Focus 45(3):E9

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Frassanito.

Ethics declarations

Conflict of interest

The authors declare that are no conflict of interest to disclose.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frassanito, P., Noya, C. & Tamburrini, G. Current trends in the management of subependymal giant cell astrocytomas in tuberous sclerosis. Childs Nerv Syst 36, 2527–2536 (2020). https://doi.org/10.1007/s00381-020-04889-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-020-04889-9

Keywords

Navigation