Skip to main content
Log in

Can destabilization rims of hydrous minerals be used to constrain magma ascent kinetics at lava dome volcanoes?

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Time constraints on igneous processes related to eruption triggering, e.g., magma mixing or ascent in the conduit, are needed in any risk mitigation attempt. In this context, magma ascent rate and kinetics are key parameters as they may correspond to the response time available to civil protection during volcanic unrest. Several tools available to quantify such durations include diffusion chronometry, isotopic geochemistry, and hydrous mineral destabilization related to magma degassing during ascent through the conduit. Here I discuss the possible limitations of the widely used hydrous mineral destabilization chronometry applied to minerals within large lava bodies that cool relatively slowly (over days or weeks) such as thick lava flows and lava domes. Based on the type case of the Sarcoui dome (Chaîne des Puys, France) and its associated phreatomagmatic outbreak deposits, I suggest that hydrous mineral destabilization rims may, in some cases, develop at the surface during dome emplacement. From this perspective, preeruptive timescales calculated based on disequilibrium kinetics will be greatly underestimated, leading to a serious issue in the reconstruction of the eruption dynamics and its possible applications to emergency management for future eruptions. More generally, hydrous mineral destabilization chronometry should be used with great caution. Nevertheless, it remains a choice tool to quantify magma ascent rates for eruptions during which magmas quench upon arrival at the surface (e.g., Plinian, Vulcanian, or phreatomagmatic eruptions), with pumiceous textures being a good indicator of quenching. In the case of lava dome emplacement, I suggest that the minerals embedded in pumiceous clasts emitted during explosive phases are more reliable candidates for chronometry studies than crystals within the dome itself as those clasts might represent the fresh magma that triggered the explosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bachmann O, Bergantz GW (2003) Rejuvenation of the fish canyon magma body: a window into the evolution of large-volume silicic magma systems. Geology 31:789–792

    Article  Google Scholar 

  • Boivin P, Besson JC, Briot D, Camus G, Goer De Herve A, Gourgaud A, Labazuy P, Langlois E, Larouzière FD, Livet M, Mergoil J, Miallier D, Morel JM, Vernet G, Vincent PM, (2009) Volcanologie de la Chaîne des Puys, Massif Central Français. Parc Naturel Régional des Volcans d'Auvergne Clermont-Ferrand, 196 p, 1/25 000 map

  • Boudon G, Balcone-Boissard H, Villemant B, Morgan DJ (2015) What factors control superficial lava dome explosivity? Sci Rep 5:14551. https://doi.org/10.1038/srep14551

    Article  Google Scholar 

  • Browne BL, Gardner JE (2006) The influence of magma ascent path on the texture, mineralogy, and formation of hornblende reaction rims. Earth Planet Sci Lett 246:161–176

    Article  Google Scholar 

  • Browne BL, Eichelberger JC, Patino LC, Vogel TA, Dehn J, Uto K, Hoshizumi H (2006) Generation of porphyritic and equigranular mafic enclaves during magma recharge events at Unzen volcano, Japan. J Petrol 47-2:301–328. https://doi.org/10.1093/petrology/egi076

    Article  Google Scholar 

  • Condomines M, Morand P, Camus G, Duthou L (1982) Chronological and geochemical study of lavas from the Chaîne des Puys, massif central, France: evidence for crustal contamination. Contrib Mineral Petrol 81:296–303

    Article  Google Scholar 

  • Costa F, Shea T, Ubide T (2020) Diffusion chronometry and the timescales of magmatic processes. Nature Reviews-Earth & Environment 1:201–214. https://doi.org/10.1038/s43017-020-0038-x

    Article  Google Scholar 

  • De Angelis SH, Larsen J, Coombs M, Dunn A, Hayden L (2015) Amphibole reaction rims as a record of pre-eruptive magmatic heating: an experimental approach. Earth Planet Sci Lett 426:235–245

    Article  Google Scholar 

  • De Goër A, Camus G, Gourgaud A, Kieffer G, Mergoil J, Vincent P (1991) Volcanologie de la Chaîne des Puys. Parc Naturel Régional des Volcans d’Auvergne Edition, 128pp

  • Demouchy S, Jacobsen SD, Gaillard F, Stern CR (2006) Rapid magma ascent recorded by water diffusion profiles in mantle olivine. Geology 34-6:429–432. https://doi.org/10.1130/G22386.1

    Article  Google Scholar 

  • Devine JD, Rutherford MJ, Gardner JE (1998) Petrologic determination of ascent rates for the 1995-1997 Soufriere Hills volcano andesitic magma. Geophys Res Lett 25-19:3673–3676

    Article  Google Scholar 

  • Druitt TH, Costa F, Deloule E, Dungan M, Scaillet B (2012) Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano. Nature 482:77–80. https://doi.org/10.1038/nature10706

    Article  Google Scholar 

  • Dzurisin D, Denlinger RP, Rosenbaum JG (1990) Cooling rate and thermal structure determined from progressive magnetization of the Dacite Dome at Mount St. Helens, Washington. J. Geophys. Res. 95:2763. https://doi.org/10.1029/JB095iB03p02763

    Article  Google Scholar 

  • Endo ET, Malone SD, Noson LL, Weaver CJ (1981) Locations, magnitudes and statistics of the March 20--May 18 earthquake sequence. USGS Prof Pap 1250:93–108

    Google Scholar 

  • Faure F, Trolliard G, Montel JM, Nicollet C (2001) Nano-petrographic investigation of a mafic xenolith (maar de Beaunit, Massif Central, France). Eur J Mineral 13:27–40

    Article  Google Scholar 

  • Feeley TC, Sharp ZD (1996) Chemical and hydrogen isotope evidence for in situ dehydrogenation of biotite in silicic magma chambers. Geology 24-11:1021–1024

    Article  Google Scholar 

  • Fergusson DJ, Gonnermann HM, Ruprecht P, Plank T, Hauri EH, Houghton BF, Swanson DA (2016) Magma decompression rates during explosive eruptions of Kilauea volcano, Hawaii, recorded by melt embayments. Bull Volcanol 78:71. https://doi.org/10.1007/s00445-016-1064-x

    Article  Google Scholar 

  • France L, Chazot G, Kornprobst J, Dallai L, Vannucci R, Grégoire M, Bertrand H, Boivin P (2015) Mantle refertilization and magmatism in old orogenic regions: the role of late-orogenic pyroxenites. Lithos 232:49–75. https://doi.org/10.1016/j.lithos.2015.05.017

    Article  Google Scholar 

  • France L, Demacon M, Gurenko A, Briot D (2016) Oxygen isotopes reveal crustal contamination and a large, still partially molten magma chamber in Chaîne des Puys (French Massif Central). Lithos 260:328–338

    Article  Google Scholar 

  • Garcia MO, Jacobson SS (1979) Crystal clots, amphibole fractionation and the evolution of calc-alkaline magmas. Contrib Mineral Petrol 69:319–327

    Article  Google Scholar 

  • Girard G, Reagan MK, Sims KWW, Thornber CR, Waters CL, Phillips EH (2017) 238U-230Th-226Ra-210Pb-210Po disequilibria constraints on magma generation, ascent, and degassing during the ongoing eruption of Kīlauea. J Petrol 58-6:1199–1226. https://doi.org/10.1093/petrology/egx051

    Article  Google Scholar 

  • Granet M, Wilson M, Achauer U (1995) Imaging a plume beneath the French Massif Central. Earth Planet Sci Lett 136:281–296

    Article  Google Scholar 

  • Gu X, Deloule E, France L, Ingrin J (2016) Multi-stage metasomatism revealed by trace element and Li isotope distributions in minerals of peridotite xenoliths from Allègre volcano (French Massif Central). Lithos 264:158–174

    Article  Google Scholar 

  • Gu X, Ingrin J, Deloule E, France L, Xia Q (2018) Metasomatism in the sub-continental lithospheric mantle beneath the south French Massif Central: constraints from trace elements, Li and H in peridotite minerals. Chem Geol 478:2–17. https://doi.org/10.1016/j.chemgeo.2017.08.006

    Article  Google Scholar 

  • Gudmundsson A, Lecoeur N, Mohajeri N, Thordarson T (2014) Dike emplacement at Bardarbunga, Iceland, induces unusual stress changes, caldera deformation, and earthquakes. Bull Volcanol 76:869

    Article  Google Scholar 

  • Hamelin C, Seitz HM, Barrat JA, Dosso L, Maury RC, Chaussidon M (2009) A lowδ7Li lower crustal component: evidence from an alkalic intraplate volcanic series (Chaîne des Puys, French Massif Central). Chem Geol 266:205–217

    Article  Google Scholar 

  • Hoernle K, Zhang YS, Graham D (1995) Seismic and geochemical evidence for large scale mantle upwelling beneath the eastern Atlantic and western and central Europe. Nature 374:34–39

    Article  Google Scholar 

  • Holtz F, Sato H, Lewis J, Behrens H, Nakada S (2005) Experimental petrology of the 1991–1995 Unzen dacite, Japan. Part 1: phase relations, phase composition, and pre-eruptive conditions. J Petrol 46:319–337

    Article  Google Scholar 

  • Houghton BF, Wilson CJN (1989) A vesicularity index for pyroclastic deposits. Bull Volcanol 51:451–462

    Article  Google Scholar 

  • Huber C, Bachmann O, Manga M (2010) Two competing effects of volatiles on heat transfer in crystal-rich magmas: thermal insulation vs defrosting. J Petrol 51:847–867

    Article  Google Scholar 

  • Juvigne E (1992) Studies on the age of two volcanic lacustrine craters of Auvergne (France). Comptes Rendus Acad Sci Série 2-314:401–404

    Google Scholar 

  • Lustrino M, Wilson M (2007) The Circum-Mediterranean Anorogenic Cenozoic Igneous Province. Earth Sci Rev 81:1–65

    Article  Google Scholar 

  • Martel C, Champallier R, Prouteau G, Pichavant M, Arbaret L, Balcone-Boissard H, Boudon G, Boivin P, Bourdier JL, Scaillet B (2013) Trachyte phase relations and implication for magma storage conditions in the Chaîne des Puys (FrenchMassif Central). J Petrol 54-6:1071–1107. https://doi.org/10.1093/petrology/egt006

    Article  Google Scholar 

  • Métrich N, Wallace P (2008) Volatile abundances in basaltic magmas and their degassing paths tracked by melt inclusions. In: Putirka K, Tepley F (eds) Minerals, inclusions and volcanic processes. Mineralogical Society of America, Reviews in Mineralogy and Geochemistry, vol 69, pp 363–402

    Chapter  Google Scholar 

  • Miallier D, Condomines M, Pilleyre T, Sanzelle S, Guittet J (2004) Concordant thermoluminescence and 238U–230Th ages for a trachytic dome (Grand Sarcoui) from the Chaîne des Puys (French Massif Central). Quat Sci Rev 23-5(6):709–715

    Article  Google Scholar 

  • Miallier D, Pilleyre T, Boivin P, Labazuy P, Gailler LS, Rico J (2017) Grand Sarcoui volcano (Chaîne des Puys, Massif Central, France), a case study for monogenetic trachytic lava domes. J Volcanol Geotherm Res 345:125–141. https://doi.org/10.1016/j.jvolgeores.2017.07.015

    Article  Google Scholar 

  • Plechov PY, Tsai AE, Shcherbakov VD, Dirksen OV (2008) Opacitization conditions of hornblende in Bezymyannyi volcano andesites (March 30, 1956 Eruption). Petrology 16-1:21–37

    Google Scholar 

  • Pouchou JL, Pichoir F (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. In: Heinrich KFJ, Newbury DE (eds) Electron probe quantification. Plenum, New York, pp 31–75

    Chapter  Google Scholar 

  • Rutherford MJ (2008) Magma ascent rates. Rev Mineral Geochem 69:241–271

    Article  Google Scholar 

  • Rutherford MJ, Hill PM (1993) Magma ascent rates from amphibole breakdown: experiments and the 1980-1986 mount St. Helens eruptions. J Geophys Res 98:19667–19685

    Article  Google Scholar 

  • Shea T, Gurioli L, Houghton BF (2012) Transitions between fall phases and pyroclastic density currents during the AD 79 eruption at Vesuvius: building a transient conduit model from the textural and volatile record. Bull Volcanol 74:2363–2381

    Article  Google Scholar 

  • Shea T, Costa F, Krimer D, Hammer JE (2015) Accuracy of timescales retrieved from diffusion modeling in olivine: a 3D perspective. Am Mineral 100:2026–2042

    Article  Google Scholar 

  • Sigmundsson F, Hooper A, Hreinsdòttir S, Vogfjörd KS, Òfeigsson BG, Heimisson ER, Dumont S, Parks M, Spaans K, Gudmundsson GB, Drouin V, Àrnadòttir T, Jònsdòttir K, Gudmundsson MT, Högnadòttir T, Fridriksdòttir HM, Hensch M, Einarsson P, Magnùsson E, Samsonov S, Brandsdòttir B, White RS, Àgùstsdòttir T, Greenfield T, Green RG, Hjartardòttir AR, Pedersen R, Bennett RA, Geirsson H, La Femina PC, Björnsson H, Pàlsson F, Sturkell E, Bean CJ, Möllhoff M, Braiden AK, Eibl EPS (2014) Segmented lateral dyke growth in a rifting event at Bàrðarbunga volcanic system, Iceland. Nature 517:191–195. https://doi.org/10.1038/nature14111

    Article  Google Scholar 

  • Spiegelman M, Elliott T (1993) Consequences of melt transport for uranium series disequilibrium in young lavas. Earth Planet Sci Lett 118-1/4:1–20

    Article  Google Scholar 

  • Underwood SJ, Feeley TC, Clynne MA (2012) Hydrogen isotope investigation of amphibole and biotite phenocrysts in silicic magmas erupted at Lassen volcanic center, California. J Volcanol Geotherm Res 227-228:32–49

    Article  Google Scholar 

  • Venezky DY, Rutherford MJ (1999) Petrology and Fe–Ti oxide reequilibration of the 1991 Mount Unzen mixed magma. J Volcanol Geotherm Res 89:213–230

    Article  Google Scholar 

  • Villemant B, Joron JL, Jaffrezic H, Treuil M, Maury RC, Brousse R (1980) Cristallisation fractionnée d'un magma basaltique alcalin: la série de la Chaîne des Puys (Massif Central, France). II. Géochimie. Bull Mineral 103:267–286

    Google Scholar 

  • White JDL, Valentine GA (2016) Magmatic versus phreatomagmatic fragmentation: absence of evidence is not evidence of absence. Geosphere 12-5:1478–1488. https://doi.org/10.1130/GES01337.1

    Article  Google Scholar 

  • Zindler A, Hart SR (1986) Chemical geodynamics. Annu Rev Earth Planet Sci 14:493–571

    Article  Google Scholar 

Download references

Acknowledgments

Mickael Demacon is thanked for numerous discussions related to the various processes involved in Sarcoui trachyte magma genesis and evolution during his undergraduate project. François Faure is thanked for assistance during field sampling. Georges Boudon is thanked for discussions related to estimating the kinetics of igneous processes in silica-rich systems. I thank the Editor, two anonymous reviewers, and Pavel Plechov for constructive comment that improved the manuscript. This is CRPG contribution n°2742.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lydéric France.

Additional information

Editorial responsibility: L. Pioli; Deputy Executive Editor: J. Tadeucci

Electronic supplementary material

Table S1

Sample list, type, and coordinates. (XLSX 9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

France, L. Can destabilization rims of hydrous minerals be used to constrain magma ascent kinetics at lava dome volcanoes?. Bull Volcanol 82, 66 (2020). https://doi.org/10.1007/s00445-020-01405-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-020-01405-4

Keywords

Navigation