Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access September 23, 2020

Dielectric relaxation and current conduction mechanism of Tb and Mn codoped bismuth ferrite grafted poly (vinyl alcohol) nanocomposite film

  • Monalisa Halder EMAIL logo and Ajit Kumar Meikap

Abstract

Investigation on current conduction mechanism through Tb and Mn codoped Bismuth Ferrite grafted polyvinyl alcohol (BTFMO-PVA) nanocomposite film above room temperature (300 K – 415 K) is reported here in detail. A detailed study on dielectric properties of the sample is done over a wide temperature range in a frequency range of 20 Hz - 2MHz. The conduction is attributed to correlated barrier hopping model. Bipolaron hopping dominates over single-polaron hopping in this system. Complex electric modulus spectra and complex modulus spectra are well explained by suitable models to understand the effective dielectric response. The sample responds to the externally applied magnetic field exhibiting negative magnetocapacitance at room temperature.

References

[1] Prabhakaran, T., and J. Hemalatha. Synthesis and characterization of magnetoelectric polymer nanocomposites. Journal of Polymer Science. Part B, Polymer Physics, Vol. 46, No. 22, 2008, pp. 2418–2422.10.1002/polb.21575Search in Google Scholar

[2] Mukherjee, P. S., A. K. Das, B. Dutta, and A. K. Meikap. Role of silver nanotube on conductivity, dielectric permittivity and current voltage characteristics of polyvinyl alcohol-silver nanocomposite film. Journal of Physics and Chemistry of Solids, Vol. 111, 2017, pp. 266–273.10.1016/j.jpcs.2017.07.032Search in Google Scholar

[3] Dabra, N., J. S. Hundal, K. C. Sekhar, A. Nautiyal, and R. Nath. Preparation and characterization of the ferroelectric potassium nitrate: Poly(vinyl alcohol) composite films. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 56, No. 8, Aug. 2009, pp. 1627–1633.10.1109/TUFFC.2009.1227Search in Google Scholar PubMed

[4] Bindu, P., and S. Thomas. Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. Journal of Theoratical and Applied Physics, Vol. 8, No. 4, 2014, pp. 123–134.10.1007/s40094-014-0141-9Search in Google Scholar

[5] Hwang, J. S., J. Y. Cho, S. Y. Park, Y. J. Yoo, P. S. Yoo, B. W. Lee, and Y. P. Lee. Multiferroic properties of stretchable BiFeO3 nanocomposite film. Applied Physics Letters, Vol. 106, No. 6, 2015, p. 062902.10.1063/1.4907220Search in Google Scholar

[6] Halder, M., A. K. Das, and A. K. Meikap. Effect of BiFeO3 nanoparticle on electrical, thermal and magnetic properties of polyvinyl alcohol (PVA) composite film. Materials Research Bulletin, Vol. 104, 2018, pp. 179–187.10.1016/j.materresbull.2018.01.036Search in Google Scholar

[7] Hossain, S. M., A.Mukherjee, S. Basu, and M. Pal. Effect of Ni–Co codoping on structure and electrical properties of multiferroic BiFeO3 nanoparticles. Micro & Nano Letters, Vol. 8, No. 7, 2013, pp. 374–377.10.1049/mnl.2013.0078Search in Google Scholar

[8] Wang, J., J. Hu, L. Yang, K. Zhu, B. W. Li, Q. Sun, Y. Li, and J. Qiu. High discharged energy density of polymer nanocomposites induced by Nd-doped BaTiO3 nanoparticles. J Materiomics, Vol. 4, No. 1, 2018, pp. 44–50.10.1016/j.jmat.2018.01.001Search in Google Scholar

[9] Halder, M., and A. K. Meikap. Electrical transport properties of Tb and Mn codoped bismuth ferrite embedded poly (vinyl alcohol) nanocomposite film. AIP Conference Proceedings, Vol. 2115, 2019, id. 030429.Search in Google Scholar

[10] Kader, F. H. A. E., W. H. Osman, K. H. Mahmoud, and M. A. F. Basha. Dielectric investigations and ac conductivity of polyvinyl alcohol films doped with europiumand terbiumchloride. Physica B, Condensed Matter, Vol. 403, No. 19-20, 2008, pp. 3473-3484.10.1016/j.physb.2008.05.009Search in Google Scholar

[11] Hanafy, T. A. Dielectric relaxation and alternating current conductivity of lanthanum, gadolinium, and erbium-polyvinyl alcohol doped films. Journal of Applied Physics, Vol. 112, No. 3, 2012, p. 034102.10.1063/1.4739752Search in Google Scholar PubMed PubMed Central

[12] Mahendia, S., A. K. Tomar, and S. Kumar. Electrical conductivity and dielectric spectroscopic studies of PVA–Ag nanocomposite films. Journal of Alloys and Compounds, Vol. 508, No. 2, 2010, pp. 406–411.10.1016/j.jallcom.2010.08.075Search in Google Scholar

[13] Imran, Z., M. A. Rafiq, M. Ahmad, K. Rasool, S. S. Batool, and M. M. Hasan. Temperature dependent transport and dielectric properties of cadmium titanate nanofiber mats. AIP Advances, Vol. 3, No. 3, 2013, p. 032146.10.1063/1.4799756Search in Google Scholar

[14] Nahass, M. M. E., and H. A. M. Ali. AC conductivity and dielectric behavior of bulk Furfurylidenemalononitrile. Solid State Communications, Vol. 152, No. 12, 2012, pp. 1084-1088.10.1016/j.ssc.2012.03.002Search in Google Scholar

[15] Das, S. N., A. Pattanaik, S. Kadambini, S. Pradhan, S. Bhuyan, and R. N. P. Choudhary. Dielectric and impedance spectroscopy of Ni doped BiFeO3-BaTiO3 electronic system. Journal of Materials ScienceMaterials in Electronics, Vol. 27, No. 10, 2016, pp. 10099–10105.10.1007/s10854-016-5084-2Search in Google Scholar

[16] Jonscher, A. K. The ‘universal’ dielectric response. Nature, Vol. 267, No. 5613, 1977, pp. 673–679.Search in Google Scholar

[17] Joshi, J. H., G. M. Joshi, M. J. Joshi, and K. D. Parikh. Complex impedance, FT-Raman, and photoluminescence spectroscopic studies of pure and L-phenylalanine doped ammonium dihydrogen phosphate single crystals: The correlation with hydrogen bonding defect. Ionics, Vol. 25, No. 7, 2019, pp. 3223–3245.10.1007/s11581-018-2834-6Search in Google Scholar

[18] Elliot, S. R. A.c. conduction in amorphous chalcogenide and pnictide semiconductors. Advances in Physics, Vol. 36, 1987, pp. 135-217.10.1080/00018738700101971Search in Google Scholar

[19] Shimakawa, K. Contribution of Single Polaron Hopping to Ac Conduction in Amorphous Chalcogenides. Journal de Physique Colloques, Vol. 42, No. C4, 1981, pp. C4-167-C4-170.10.1051/jphyscol:1981434Search in Google Scholar

[20] Joshi, J. H., S. Kalainathan, M. J. Joshi, and K. D. Parikh. Effect of l-threonine on growth and properties of ammonium dihydrogen phosphate crystal. Arabian Journal of Chemistry, Vol. 13, No. 1, 2020, pp. 1532–1550.10.1016/j.arabjc.2017.12.005Search in Google Scholar

[21] Heath, J. T., J. D. Cohen, and W. N. Shafarman. Bulk and metastable defects in CuIn1-xGaxSe2 thin films using drive-level capacitance profiling. Journal of Applied Physics, Vol. 95, No. 3, 2004, pp. 1000–1010.10.1063/1.1633982Search in Google Scholar

[22] Joshi, J. H., D. K. Kanchan, M. J. Joshi, H.O. Jethva, and K. D. Parikh. Dielectric relaxation, complex impedance and modulus spectroscopic studies of mix phase rod like cobalt sulfide nanoparticles. Materials Research Bulletin, Vol. 93, 2017, pp. 63–73.10.1016/j.materresbull.2017.04.013Search in Google Scholar

[23] Joshi, J. H., G. M. Joshi, M. J. Joshi, H. O. Jethva, and K. D. Parikh. Raman, photoluminescence, and a.c. electrical studies of pure and l -serine doped ammonium dihydrogen phosphate single crystals: An understanding of defect chemistry in hydrogen bonding. New Journal of Chemistry, Vol. 42, No. 21, 2018, pp. 17227–17249.10.1039/C8NJ03393ESearch in Google Scholar

[24] Patri, S. K., P. L. Deepti, R. N. P. Choudhary, and B. Behera. Dielectric, impedance and modulus spectroscopy of BaBi2Nb2O9. Journal of Electroceramics, Vol. 40, No. 4, 2018, pp. 338–346.10.1007/s10832-018-0135-0Search in Google Scholar

[25] Ashery, A., A. H. Zaki, M. H. Mourad, A. M. Azab, and A. A. M. Farag. Structural and frequency dependencies of a.c. and dielectric characterizations of epitaxial InSb-based heterojunctions. Bulletin ofMaterials Science, Vol. 39, No. 4, 2016, pp. 1057–1063.10.1007/s12034-016-1224-9Search in Google Scholar

[26] Joshi, J. H., D. K. Kanchan, H. O. Jethva, M. J. Joshi, and K. D. Parikh. Dielectric relaxation, protonic defect, conductivity mechanisms, complex impedance and modulus spectroscopic studies of pure and L-threonine-doped ammonium dihydrogen phosphate. Ionics, Vol. 24, No. 7, 2018, pp. 1995–2016.10.1007/s11581-018-2461-2Search in Google Scholar

[27] Macedo, P. B., C. T.Moynihan, and R. Bose. The Role of Ionic Diffusion in Polarization in Vitreous Ionic Conductors. Physics and Chemistry of Glasses, Vol. 13, 1972, pp. 171–179Search in Google Scholar

[28] Mrudula, M. S., and M. R. G. Nair. Dielectric properties of natural rubber/polyethylene oxide block copolymer complexed with transition metal ions. Polymer Bulletin, 2019. DOI: https://doi.org/10.1007/s00289-019-03035-z10.1007/s00289-019-03035-zSearch in Google Scholar

[29] Tang, R., H. Zhou, W. You, and H. Yang. Room-temperature multiferroic and magnetocapacitance effects in M-type hexaferrite BaFe10.2Sc1.8O19. Applied Physics Letters, Vol. 109, No. 8, 2016, p. 082903.10.1063/1.4961615Search in Google Scholar

[30] Jung, K., Y. Kim, H. Im, H. Kim, and B. Park. Leakage transport in the high-resistance state of a resistive-switching NbOx thin film prepared by pulsed laser deposition. Journal of the Korean Physical Society, Vol. 59, No. 4, 2011, pp. 2778–2781.10.3938/jkps.59.2778Search in Google Scholar

Received: 2019-10-29
Accepted: 2020-04-23
Published Online: 2020-09-23

© 2020 Monalisa Halder et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 12.5.2024 from https://www.degruyter.com/document/doi/10.1515/rams-2020-0040/html
Scroll to top button