Skip to main content

Advertisement

Log in

Protein signatures from blood plasma and urine suggest changes in vascular function and IL-12 signaling in elderly with a history of chronic diseases compared with an age-matched healthy cohort

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Key processes characterizing human aging are immunosenescence and inflammaging. The capacity of the immune system to adequately respond to external perturbations (e.g., pathogens, injuries, and biochemical irritants) and to repair somatic mutations that may cause cancers or cellular senescence declines. An important goal remains to identify genetic or biochemical, predictive biomarkers for healthy aging. We recruited two cohorts in the age range 70 to 82, one afflicted by chronic illnesses (non-healthy aging, NHA) and the other in good health (healthy aging, HA). NHA criteria included major cardiovascular, neurodegenerative, and chronic pulmonary diseases, diabetes, and cancers. Quantitative analysis of forty proinflammatory cytokines in blood plasma and more than 500 proteins in urine was performed to identify candidate biomarkers for and biological pathway implications of healthy aging. Nine cytokines revealed lower quantities in blood plasma for the NHA compared with the HA groups (fold change > 1.5; p value < 0.025) including IL-12p40 and IL-12p70. We note that, sampling at two timepoints, intra-individual cytokine abundance patterns clustered in 86% of all 60 cases, indicative of person-specific, highly controlled multi-cytokine signatures in blood plasma. Twenty-three urinary proteins were differentially abundant (HA versus NHA; fold change > 1.5; p value < 0.01). Among the proteins increased in abundance in the HA cohort were glycoprotein MUC18, ephrin type-B receptor 4, matrix remodeling–associated protein 8, angiopoietin-related protein 2, K-cadherin, and plasma protease C1 inhibitor. These proteins have been linked to the extracellular matrix, cell adhesion, and vascular remodeling and repair processes. In silico network analysis identified the regulation of coagulation, antimicrobial humoral immune responses, and the IL-12 signaling pathway as enriched GO terms. To validate links of these preliminary biomarkers and IL-12 signaling with healthy aging, clinical studies using larger cohorts and functional characterization of the genes/proteins in cellular models of aging need to be conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All detailed datasets (medical data, quantitative cytokine and urinary proteome surveys) and methods used for analysis are included in the “Materials and methods” section and in the Supplemental Files. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD012477 (reviewer account details: username: reviewer44087@ebi.ac.uk; password: qAT4NwUo).

References

  1. Bakun M, Senatorski G, Rubel T, Lukasik A, Zielenkiewicz P, Dadlez M, et al. Urine proteomes of healthy aging humans reveal extracellular matrix (ECM) alterations and immune system dysfunction. Age (Dordr). 2014;36(1):299–311. https://doi.org/10.1007/s11357-013-9562-7.

    Article  CAS  Google Scholar 

  2. Balasubbramanian D, Goodlett BL, Mitchell BM. Is IL-12 pro-inflammatory or anti-inflammatory? Depends on the blood pressure. Cardiovasc Res. 2019;115(6):998–9. https://doi.org/10.1093/cvr/cvz028.

    Article  CAS  PubMed  Google Scholar 

  3. Barski OA, Tipparaju SM, Bhatnagar A. The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metab Rev. 2008;40(4):553–624. https://doi.org/10.1080/03602530802431439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25(8):1091–3. https://doi.org/10.1093/bioinformatics/btp101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bindea G, Galon J, Mlecnik B. CluePedia Cytoscape plugin: pathway insights using integrated experimental and in silico data. Bioinformatics. 2013;29(5):661–3. https://doi.org/10.1093/bioinformatics/btt019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bitar MS. Diabetes impairs angiogenesis and induces endothelial cell senescence by up-regulating thrombospondin-CD47-dependent signaling. Int J Mol Sci. 2019;20(3). https://doi.org/10.3390/ijms20030673.

  7. Bolotin E, Smogorzewska M, Smith S, Widmer M, Weinberg K. Enhancement of thymopoiesis after bone marrow transplant by in vivo interleukin-7. Blood. 1996;88(5):1887–94 https://www.ncbi.nlm.nih.gov/pubmed/8781449.

    Article  CAS  PubMed  Google Scholar 

  8. Bonomini F, Rodella LF, Rezzani R. Metabolic syndrome, aging and involvement of oxidative stress. Aging Dis. 2015;6(2):109–20. https://doi.org/10.14336/AD.2014.0305.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bratic A, Larsson NG. The role of mitochondria in aging. J Clin Invest. 2013;123(3):951–7. https://doi.org/10.1172/JCI64125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brunk UT, Terman A. The mitochondrial-lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur J Biochem. 2002;269(8):1996–2002 https://www.ncbi.nlm.nih.gov/pubmed/11985575.

    Article  CAS  PubMed  Google Scholar 

  11. Byun HO, Han NK, Lee HJ, Kim KB, Ko YG, Yoon G, et al. Cathepsin D and eukaryotic translation elongation factor 1 as promising markers of cellular senescence. Cancer Res. 2009;69(11):4638–47. https://doi.org/10.1158/0008-5472.CAN-08-4042.

    Article  CAS  PubMed  Google Scholar 

  12. Carmona-Gutierrez D, Hughes AL, Madeo F, Ruckenstuhl C. The crucial impact of lysosomes in aging and longevity. Ageing Res Rev. 2016;32:2–12. https://doi.org/10.1016/j.arr.2016.04.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen Y, Fu LL, Wen X, Wang XY, Liu J, Cheng Y, et al. Sirtuin-3 (SIRT3), a therapeutic target with oncogenic and tumor-suppressive function in cancer. Cell Death Dis. 2014;5:e1047. https://doi.org/10.1038/cddis.2014.14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Collins P, Maas A, Prasad M, Schierbeck L, Lerman A. Endothelial vascular function as a surrogate of vascular risk and aging in women. Mayo Clin Proc. 2020;95(3):541–53. https://doi.org/10.1016/j.mayocp.2019.07.001.

    Article  PubMed  Google Scholar 

  15. Crimmins E, Vasunilashorn S, Kim JK, Alley D. Biomarkers related to aging in human populations. Adv Clin Chem. 2008;46:161–216. https://doi.org/10.1016/s0065-2423(08)00405-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cruikshank W, Little F. lnterleukin-16: the ins and outs of regulating T-cell activation. Crit Rev Immunol. 2008;28(6):467–83. https://doi.org/10.1615/critrevimmunol.v28.i6.10.

    Article  CAS  PubMed  Google Scholar 

  17. Del Vecchio M, Bajetta E, Canova S, Lotze MT, Wesa A, Parmiani G, et al. Interleukin-12: biological properties and clinical application. Clin Cancer Res. 2007;13(16):4677–85. https://doi.org/10.1158/1078-0432.CCR-07-0776.

    Article  PubMed  Google Scholar 

  18. Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci. 2014;69(Suppl 1):S4–9. https://doi.org/10.1093/gerona/glu057.

    Article  PubMed  Google Scholar 

  19. Fulop T, Larbi A, Dupuis G, Le Page A, Frost EH, Cohen AA, et al. Immunosenescence and inflammaging as two sides of the same coin: friends or foes? Front Immunol. 2017;8:1960. https://doi.org/10.3389/fimmu.2017.01960.

    Article  CAS  PubMed  Google Scholar 

  20. Gimbrone MA Jr, Garcia-Cardena G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res. 2016;118(4):620–36. https://doi.org/10.1161/CIRCRESAHA.115.306301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Granger JP. Inflammatory cytokines, vascular function, and hypertension. Am J Physiol Regul Integr Comp Physiol. 2004;286(6):R989–90. https://doi.org/10.1152/ajpregu.00157.2004.

    Article  CAS  PubMed  Google Scholar 

  22. Gruver AL, Hudson LL, Sempowski GD. Immunosenescence of ageing. J Pathol. 2007;211(2):144–56. https://doi.org/10.1002/path.2104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Han SW, Jung YK, Lee EJ, Park HR, Kim GW, Jeong JH, et al. DICAM inhibits angiogenesis via suppression of AKT and p38 MAP kinase signalling. Cardiovasc Res. 2013;98(1):73–82. https://doi.org/10.1093/cvr/cvt019.

    Article  CAS  PubMed  Google Scholar 

  24. Herman WH, Cohen RM. Racial and ethnic differences in the relationship between HbA1c and blood glucose: implications for the diagnosis of diabetes. J Clin Endocrinol Metab. 2012;97(4):1067–72. https://doi.org/10.1210/jc.2011-1894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Herranz N, Gil J. Mechanisms and functions of cellular senescence. J Clin Invest. 2018;128(4):1238–46. https://doi.org/10.1172/JCI95148.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Janelidze S, Mattsson N, Palmqvist S, Smith R, Beach TG, Serrano GE, et al. Plasma P-tau181 in Alzheimer’s disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia. Nat Med. 2020;26(3):379–86. https://doi.org/10.1038/s41591-020-0755-1.

    Article  CAS  PubMed  Google Scholar 

  27. Kim HO, Kim HS, Youn JC, Shin EC, Park S. Serum cytokine profiles in healthy young and elderly population assessed using multiplexed bead-based immunoassays. J Transl Med. 2011;9:113. https://doi.org/10.1186/1479-5876-9-113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kollerits B, Lamina C, Huth C, Marques-Vidal P, Kiechl S, Seppala I, et al. Plasma concentrations of Afamin are associated with prevalent and incident type 2 diabetes: a pooled analysis in more than 20,000 individuals. Diabetes Care. 2017;40(10):1386–93. https://doi.org/10.2337/dc17-0201.

    Article  CAS  PubMed  Google Scholar 

  29. Kong X, Wang R, Xue Y, Liu X, Zhang H, Chen Y, et al. Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS One. 2010;5(7):e11707. https://doi.org/10.1371/journal.pone.0011707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kronenberg F, Kollerits B, Kiechl S, Lamina C, Kedenko L, Meisinger C, et al. Plasma concentrations of afamin are associated with the prevalence and development of metabolic syndrome. Circ Cardiovasc Genet. 2014;7(6):822–9. https://doi.org/10.1161/CIRCGENETICS.113.000654.

    Article  CAS  PubMed  Google Scholar 

  31. Kubota Y, Oike Y, Satoh S, Tabata Y, Niikura Y, Morisada T, et al. Cooperative interaction of angiopoietin-like proteins 1 and 2 in zebrafish vascular development. Proc Natl Acad Sci U S A. 2005;102(38):13502–7. https://doi.org/10.1073/pnas.0501902102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. La Thangue NB, Kerr DJ. Predictive biomarkers: a paradigm shift towards personalized cancer medicine. Nat Rev Clin Oncol. 2011;8(10):587–96. https://doi.org/10.1038/nrclinonc.2011.121.

    Article  CAS  PubMed  Google Scholar 

  33. Lara J, Cooper R, Nissan J, Ginty AT, Khaw KT, Deary IJ, et al. A proposed panel of biomarkers of healthy ageing. BMC Med. 2015;13:222. https://doi.org/10.1186/s12916-015-0470-9.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lau MT, Klausen C, Leung PC. E-cadherin inhibits tumor cell growth by suppressing PI3K/Akt signaling via beta-catenin-Egr1-mediated PTEN expression. Oncogene. 2011;30(24):2753–66. https://doi.org/10.1038/onc.2011.6.

    Article  CAS  PubMed  Google Scholar 

  35. Lin K, Dorman JB, Rodan A, Kenyon C. daf-16: an HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science. 1997;278(5341):1319–22 http://www.ncbi.nlm.nih.gov/pubmed/9360933.

    Article  CAS  PubMed  Google Scholar 

  36. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. https://doi.org/10.1186/s13059-014-0550-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Malik VA, Di Benedetto B. The blood-brain barrier and the EphR/Ephrin system: perspectives on a link between neurovascular and neuropsychiatric disorders. Front Mol Neurosci. 2018;11:127. https://doi.org/10.3389/fnmol.2018.00127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Minciullo PL, Catalano A, Mandraffino G, Casciaro M, Crucitti A, Maltese G, et al. Inflammaging and anti-inflammaging: the role of cytokines in extreme longevity. Arch Immunol Ther Exp. 2016;64(2):111–26. https://doi.org/10.1007/s00005-015-0377-3.

    Article  CAS  Google Scholar 

  39. Nagaraj N, Mann M. Quantitative analysis of the intra- and inter-individual variability of the normal urinary proteome. J Proteome Res. 2011;10(2):637–45. https://doi.org/10.1021/pr100835s.

    Article  CAS  PubMed  Google Scholar 

  40. Pranjol MZI, Gutowski NJ, Hannemann M, Whatmore JL. Cathepsin D non-proteolytically induces proliferation and migration in human omental microvascular endothelial cells via activation of the ERK1/2 and PI3K/AKT pathways. Biochim Biophys Acta Mol Cell Res. 2018;1865(1):25–33. https://doi.org/10.1016/j.bbamcr.2017.10.005.

    Article  CAS  PubMed  Google Scholar 

  41. Qiao L, Hamamichi S, Caldwell KA, Caldwell GA, Yacoubian TA, Wilson S, et al. Lysosomal enzyme cathepsin D protects against alpha-synuclein aggregation and toxicity. Mol Brain. 2008;1:17. https://doi.org/10.1186/1756-6606-1-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rea IM, Gibson DS, McGilligan V, McNerlan SE, Alexander HD, Ross OA. Age and age-related diseases: role of inflammation triggers and cytokines. Front Immunol. 2018;9:586. https://doi.org/10.3389/fimmu.2018.00586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. https://doi.org/10.1093/nar/gkv007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rose G, Dato S, Altomare K, Bellizzi D, Garasto S, Greco V, et al. Variability of the SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly. Exp Gerontol. 2003;38(10):1065–70.

    Article  CAS  PubMed  Google Scholar 

  45. Salminen A, Kaarniranta K. Insulin/IGF-1 paradox of aging: regulation via AKT/IKK/NF-kappaB signaling. Cell Signal. 2010;22(4):573–7. https://doi.org/10.1016/j.cellsig.2009.10.006.

    Article  CAS  PubMed  Google Scholar 

  46. de Jager SCA, Bot I, Kraaijeveld AO, Korporaal SJA, Bot M, van Santbrink PJ, et al. Leukocyte-specific CCL3 deficiency inhibits atherosclerotic lesion development by affecting neutrophil accumulation. Arterioscler Thromb Vasc Biol. 2013;33:e75–e83.

  47. Seeber B, Morandell E, Lunger F, Wildt L, Dieplinger H. Afamin serum concentrations are associated with insulin resistance and metabolic syndrome in polycystic ovary syndrome. Reprod Biol Endocrinol. 2014;12:88. https://doi.org/10.1186/1477-7827-12-88.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504. https://doi.org/10.1101/gr.1239303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shen EZ, Song CQ, Lin Y, Zhang WH, Su PF, Liu WY, et al. Mitoflash frequency in early adulthood predicts lifespan in Caenorhabditis elegans. Nature. 2014;508(7494):128–32. https://doi.org/10.1038/nature13012.

    Article  CAS  PubMed  Google Scholar 

  50. Singh H, Torralba MG, Moncera KJ, DiLello L, Petrini J, Nelson KE, et al. Gastro-intestinal and oral microbiome signatures associated with healthy aging. Geroscience. 2019;41(6):907–21. https://doi.org/10.1007/s11357-019-00098-8.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sood S, Gallagher IJ, Lunnon K, Rullman E, Keohane A, Crossland H, et al. A novel multi-tissue RNA diagnostic of healthy ageing relates to cognitive health status. Genome Biol. 2015;16:185. https://doi.org/10.1186/s13059-015-0750-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sorensen EW, Gerber SA, Frelinger JG, Lord EM. IL-12 suppresses vascular endothelial growth factor receptor 3 expression on tumor vessels by two distinct IFN-gamma-dependent mechanisms. J Immunol. 2010;184(4):1858–66. https://doi.org/10.4049/jimmunol.0903210.

    Article  CAS  PubMed  Google Scholar 

  53. Starr ME, Saito M, Evers BM, Saito H. Age-associated increase in cytokine production during systemic inflammation-II: the role of IL-1beta in age-dependent IL-6 upregulation in adipose tissue. J Gerontol A Biol Sci Med Sci. 2015;70(12):1508–15. https://doi.org/10.1093/gerona/glu197.

    Article  CAS  PubMed  Google Scholar 

  54. Steinmann GG. Changes in the human thymus during aging. Curr Top Pathol. 1986;75:43–88 https://www.ncbi.nlm.nih.gov/pubmed/3514161.

    CAS  PubMed  Google Scholar 

  55. Steinmann GG, Klaus B, Muller-Hermelink HK. The involution of the ageing human thymic epithelium is independent of puberty. A morphometric study. Scand J Immunol. 1985;22(5):563–75 https://www.ncbi.nlm.nih.gov/pubmed/4081647.

    Article  CAS  PubMed  Google Scholar 

  56. Stoka V, Turk V, Turk B. Lysosomal cathepsins and their regulation in aging and neurodegeneration. Ageing Res Rev. 2016;32:22–37. https://doi.org/10.1016/j.arr.2016.04.010.

    Article  CAS  PubMed  Google Scholar 

  57. Strafella C, Caputo V, Galota MR, Zampatti S, Marella G, Mauriello S, et al. Application of precision medicine in neurodegenerative diseases. Front Neurol. 2018;9:701. https://doi.org/10.3389/fneur.2018.00701.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Strasly M, Cavallo F, Geuna M, Mitola S, Colombo MP, Forni G, et al. IL-12 inhibition of endothelial cell functions and angiogenesis depends on lymphocyte-endothelial cell cross-talk. J Immunol. 2001;166(6):3890–9. https://doi.org/10.4049/jimmunol.166.6.3890.

    Article  CAS  PubMed  Google Scholar 

  59. Suh MJ, Tovchigrechko A, Thovarai V, Rolfe MA, Torralba MG, Wang J, et al. Quantitative differences in the urinary proteome of siblings discordant for type 1 diabetes include lysosomal enzymes. J Proteome Res. 2015;14(8):3123–35. https://doi.org/10.1021/acs.jproteome.5b00052.

    Article  CAS  PubMed  Google Scholar 

  60. Teklu T, Kwon K, Wondale B, HaileMariam M, Zewude A, Medhin G, et al. Potential immunological biomarkers for detection of mycobacterium tuberculosis infection in a setting where M. tuberculosis is endemic, Ethiopia. Infect Immun. 2018;86(4). https://doi.org/10.1128/IAI.00759-17.

  61. Terman A, Kurz T, Navratil M, Arriaga EA, Brunk UT. Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial-lysosomal axis theory of aging. Antioxid Redox Signal. 2010;12(4):503–35. https://doi.org/10.1089/ars.2009.2598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tissenbaum HA, Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature. 2001;410(6825):227–30. https://doi.org/10.1038/35065638.

    Article  CAS  PubMed  Google Scholar 

  63. Trinchieri G. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol. 1995;13:251–76. https://doi.org/10.1146/annurev.iy.13.040195.001343.

    Article  CAS  PubMed  Google Scholar 

  64. Tsimikas S, Willerson JT, Ridker PM. C-reactive protein and other emerging blood biomarkers to optimize risk stratification of vulnerable patients. J Am Coll Cardiol. 2006;47(8 Suppl):C19–31. https://doi.org/10.1016/j.jacc.2005.10.066.

    Article  CAS  PubMed  Google Scholar 

  65. Vacchelli E, Galluzzi L, Eggermont A, Galon J, Tartour E, Zitvogel L, et al. Trial watch: immunostimulatory cytokines. Oncoimmunology. 2012;1(4):493–506. https://doi.org/10.4161/onci.20459.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Voest EE, Kenyon BM, O'Reilly MS, Truitt G, D'Amato RJ, Folkman J. Inhibition of angiogenesis in vivo by interleukin 12. J Natl Cancer Inst. 1995;87(8):581–6. https://doi.org/10.1093/jnci/87.8.581.

    Article  CAS  PubMed  Google Scholar 

  67. Wang JC, Bennett M. Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ Res. 2012;111(2):245–59. https://doi.org/10.1161/CIRCRESAHA.111.261388.

    Article  CAS  PubMed  Google Scholar 

  68. Willcox BJ, Donlon TA, He Q, Chen R, Grove JS, Yano K, et al. FOXO3A genotype is strongly associated with human longevity. Proc Natl Acad Sci U S A. 2008;105(37):13987–92. https://doi.org/10.1073/pnas.0801030105.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wisniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6(5):359–62. https://doi.org/10.1038/nmeth.1322.

    Article  CAS  PubMed  Google Scholar 

  70. Woods JA, Wilund KR, Martin SA, Kistler BM. Exercise, inflammation and aging. Aging Dis. 2012;3(1):130–40 http://www.ncbi.nlm.nih.gov/pubmed/22500274.

    PubMed  Google Scholar 

  71. Xia X, Chen W, McDermott J, Han JJ. Molecular and phenotypic biomarkers of aging. F1000Res. 2017;6:860. https://doi.org/10.12688/f1000research.10692.1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ye J, Huang Y, Que B, Chang C, Liu W, Hu H, et al. Interleukin-12p35 knock out aggravates doxorubicin-induced cardiac injury and dysfunction by aggravating the inflammatory response, oxidative stress, apoptosis and autophagy in mice. EBioMedicine. 2018;35:29–39. https://doi.org/10.1016/j.ebiom.2018.06.009.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ye J, Que B, Huang Y, Lin Y, Chen J, Liu L, et al. Interleukin-12p35 knockout promotes macrophage differentiation, aggravates vascular dysfunction, and elevates blood pressure in angiotensin II-infused mice. Cardiovasc Res. 2019;115(6):1102–13. https://doi.org/10.1093/cvr/cvy263.

    Article  CAS  PubMed  Google Scholar 

  74. Yonezawa T, Ohtsuka A, Yoshitaka T, Hirano S, Nomoto H, Yamamoto K, et al. Limitrin, a novel immunoglobulin superfamily protein localized to glia limitans formed by astrocyte endfeet. Glia. 2003;44(3):190–204. https://doi.org/10.1002/glia.10279.

    Article  PubMed  Google Scholar 

  75. Yu Y, Sikorski P, Smith M, Bowman-Gholston C, Cacciabeve N, Nelson KE, et al. Comprehensive metaproteomic analyses of urine in the presence and absence of neutrophil-associated inflammation in the urinary tract. Theranostics. 2017;7(2):238–52. https://doi.org/10.7150/thno.16086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Mr. Zachary Gortler for contributions to human subject recruitment and specimen collections, and Ms. Lauren DiLello for medical data collection and discussions on biomarker analysis strategies.

Funding

This work was generously funded by the Ruggles Family Foundation, Moline, IL and Mr. and Mrs. Rudy Ruggles.

Author information

Authors and Affiliations

Authors

Contributions

YY, responsible for LC-MS/MS experiments and LC-MS/MS data analysis, participation in writing manuscript; HS, responsible for biostatistical data and network analyses, graphic art work, participation in writing manuscript; KK, responsible for cytokine array experiments and data analysis; TT, sample preparation to analyze urinary proteomes; JP, design, organization, and implementation of human subject recruitment and medical data collection; KEN, conceptualization of the study and manuscript review; RP, conceptualization and implementation of the study, biological data analysis, wrote manuscript.

Corresponding author

Correspondence to Rembert Pieper.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethics approval (include appropriate approvals or waivers)

Internal review boards (IRB) of Danbury Hospital and the J. Craig Venter Institute (JCVI), Rockville, MD approved a consent form and human subject protocol outlining risks and benefits of participation in 2013. JP and RP wrote the consent form and human subject protocol.

Consent to participate (include appropriate statements)

All human subjects consented to participate and enable specimen and medical data collections.

Consent for publication (include appropriate statements)

N/A

Code availability

For all analyses that involved coding, appropriate literature references are provided.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplemental File S1

Dataset: Relative abundances of Blood Plasma Cytokines and Chemokines from 124 Specimens (65 Human Subjects) for "Healthy Aging" and "Non-Healthy Aging" Cohorts (XLSX 74 kb)

Supplemental File S2

Dataset: Urinary Proteome Datasets from 125 Specimens (65 Human Subjects) for "Healthy Aging" and "Non-Healthy Aging" Cohorts (XLSX 473 kb)

Supplemental File 3

Dataset: Medical Histories for the 65 Study Participants and their Differentiation into "Healthy Aging" and "Non-Healthy Aging" Cohorts (XLSX 28 kb)

Supplemental File S4

Figure: Pearson correlation analysis generates hierarchical clusters of urinary proteome datasets (PNG 1691 kb)

High Resolution Image (TIF 356 kb)

Supplemental File S5

Table: Differentially Abundant Proteins Comparing Healthy Aging (HA) and Non-Healthy Aging (NHA) Cohorts Based on Urinary Proteome Analysis. (DOCX 33 kb)

Supplemental File S6

Figure: Blood Plasma Cytokine Abundance Profiles from 65 Human Subjects Assigned to Healthy Aging and Non-Healthy Aging Cohorts Analyzed Clustered Using the Euclidian Clustering Algorithm. (PNG 2074 kb)

High Resolution Image (TIF 822 kb)

Supplemental File S7

Figure: Correlation Analysis for Differentially Abundant Cytokines and Chemokines (Healthy Aging vs. Non-Healthy Aging Cohorts) (PNG 1695 kb)

High Resolution Image (TIF 574 kb)

Supplemental File S8

Dataset: Pathway Enrichment Analysis Using GO and KEGG Terms Based on Statistically Significant Proteins in the Urinary Proteome Survey (p-value < 0.05) Comparing the Healthy Aging (HA) and Non-Healthy Aging (NHA) Cohorts. (XLSX 56 kb)

Supplemental File S9

Figure: GO term and KEGG pathway enrichment with associated protein network based on proteins decreased in abundance in the HA versus the NHA cohort (HA vs. NHA; p-value < 0.05). (PNG 677 kb)

High Resolution Image (TIF 175 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Singh, H., Kwon, K. et al. Protein signatures from blood plasma and urine suggest changes in vascular function and IL-12 signaling in elderly with a history of chronic diseases compared with an age-matched healthy cohort. GeroScience 43, 593–606 (2021). https://doi.org/10.1007/s11357-020-00269-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-020-00269-y

Keywords

Navigation