Skip to main content
Log in

Discontinuous Galerkin Method with an Entropic Slope Limiter for Euler Equations

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

The variational approach to obtaining equations of the entropy stable discontinuous Galerkin method is generalized. It is shown how the monotonicity property can be incorporated into this approach. As applied to Euler equations, the entropic slope limiter, a new effective approximate method for the studied approach, is designed. It guarantees the monotonicity of the numerical solution, as well as the nonnegativity of the pressure and entropy production for each finite element. This method is successfully tested on some well-known gas dynamics model problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. E. Tadmor, “Entropy stable schemes,” Handbook Numer. Anal. 17, 467–493 (2016).

    MathSciNet  Google Scholar 

  2. S. Osher, “Riemann solvers, the entropy condition, and difference approximations,” SIAM J. Numer. Anal. 21, 217–235 (1984).

    MathSciNet  MATH  Google Scholar 

  3. F. Bouchut, C. Bourdarias, and B. Perthame, “A MUSCL method satisfying all the numerical entropy inequalities,” Math. Comput. 65, 1439–1461 (1996).

    MathSciNet  MATH  Google Scholar 

  4. E. Tadmor, “Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems,” Acta Numer., 451–512 (2003).

  5. F. Ismail and P. Roe, “Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks,” J. Comput. Phys. 228, 5410–5436 (2009).

    MathSciNet  MATH  Google Scholar 

  6. P. Chandrashekar, “Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations,” Commun. Comput. Phys. 14, 1252–1286 (2013).

    MathSciNet  MATH  Google Scholar 

  7. U. S. Fjordholm, S. Mishra, and E. Tadmor, “Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws,” SIAM J. Numer. Anal. 50, 544–573 (2012).

    MathSciNet  MATH  Google Scholar 

  8. X. Cheng and Y. Nie, “A third-order entropy stable scheme for hyperbolic conservation laws,” J. Hyperbol. Differ. Equat. 13, 129–145 (2016).

    MathSciNet  MATH  Google Scholar 

  9. A. A. Zlotnik, “Entropy-conservative spatial discretization of the multidimensional quasi-gasdynamic system of equations,” Comput. Math. Math. Phys. 57, 706–725 (2017).

    MathSciNet  MATH  Google Scholar 

  10. G. J. Gassner, A. R. Winters, and D. A. Kopriva, “A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations,” Appl. Math. Comput. 272, 291–308 (2016).

    MathSciNet  MATH  Google Scholar 

  11. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Pergamon, Oxford, 1987; Fizmatlit, Moscow, 2001).

  12. B. Cockburn, “An introduction to the discontinuous Galerkin method for convection-dominated Problems,” Lect. Notes Math. 1697, 150–268 (1997).

    Google Scholar 

  13. M. E. Ladonkina, O. A. Neklyudova, and V. F. Tishkin, “Application of averaging to smooth the solution in DG method,” KIAM Preprint No. 89 (Keldysh Inst. Appl. Math., Moscow, 2017). http://library.keldysh.ru/preprint.aspıd=2017-89.

  14. M. E. Ladonkina, O. A. Neklyudova, and V. F. Tishkin, “Impact of different limiting functions on the order of solution obtained by RKDG,” Math. Models Comput. Simul. 5, 346–349 (2013).

    MathSciNet  MATH  Google Scholar 

  15. M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, and D. I. Utiralov, “The no-slip boundary conditions for discontinuous Galerkin method,” KIAM Preprint No. 32 (Keldysh Inst. Appl. Math., Moscow, 2014). http://library.keldysh.ru/preprint.aspıd=2014-32.

  16. M. E. Ladonkina and V. F. Tishkin, “Godunov method: A generalization using piecewise polynomial approximations,” Differ. Equat. 51, 895–903 (2015).

    MathSciNet  MATH  Google Scholar 

  17. M. E. Ladonkina and V. F. Tishkin, “On Godunov-type methods of high order of accuracy,” Dokl. Math. 91, 189–192 (2015).

    MathSciNet  MATH  Google Scholar 

  18. V. F. Tishkin, V. T. Zhukov, and E. E. Myshetskaya, “Justification of Godunov’s scheme in the multidimensional case,” Math. Models Comput. Simul. 8, 548–556 (2016).

    MathSciNet  MATH  Google Scholar 

  19. M. D. Bragin, Y. A. Kriksin, and V. F. Tishkin, “Verification of an entropic regularization method for discontinuous Galerkin schemes applied to hyperbolic equations,” KIAM Preprint No. 18 (Keldysh Inst. Appl. Math., Moscow, 2019). http://library.keldysh.ru/preprint.aspıd=2019-18.

  20. Y. A. Kriksin and V. F. Tishkin, “Entropic regularization of Discontinuous Galerkin method in one-dimensional problems of gas dynamics,” KIAM Preprint No. 100 (Keldysh Inst. Appl. Math., Moscow, 2018). http://library.keldysh.ru/preprint.aspıd=2018-100.

  21. S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, and G. P. Prokopov, Numerical Solution of Multidimensional Problems of Gas Dynamics (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  22. B. Einfeldt, C. D. Munz, P. L. Roe, and B. Sjögreen, “On Godunov-type methods near low densities,” J. Comput. Phys. 92, 273–295 (1991).

    MathSciNet  MATH  Google Scholar 

  23. G. A. Sod, “A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws,” J. Comput. Phys. 27, 1–31 (1978).

    MathSciNet  MATH  Google Scholar 

  24. P. Woodward and P. Colella, “The numerical simulation of two-dimensional fluid flow with strong shocks,” J. Comput. Phys. 54, 115–173 (1984).

    MathSciNet  MATH  Google Scholar 

  25. A. V. Rodionov, “A comparison of the CABARET and MUSCL-type schemes,” Mat. Model. Comput. Simul. 6, 203–225 (2014).

    MathSciNet  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the Supercomputer Center RCC of Moscow State University and the Center of Information Technologies of Groningen University (the Netherlands) for providing the possibility to execute the numerical computations.

Funding

This work was supported by the Russian Science Foundation, project no. 17-71-30014.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. D. Bragin, Y. A. Kriksin or V. F. Tishkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Muravnik

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bragin, M.D., Kriksin, Y.A. & Tishkin, V.F. Discontinuous Galerkin Method with an Entropic Slope Limiter for Euler Equations. Math Models Comput Simul 12, 824–833 (2020). https://doi.org/10.1134/S2070048220050038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048220050038

Keywords:

Navigation