Skip to main content
Log in

Modeling the Linear Response from a Quantum Nonextensive System to a Dynamic External Disturbance

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

A dynamic theory of the linear reaction from nonextensive quasi-equilibrium multibody systems to an external time-dependent perturbation is developed in quantum statistical mechanics based on the Tsallis parametric nonadditive entropy associated with the density matrix. For nonextensive quantum systems, a modification of the Kubo theory developed in quantum mechanics is proposed. The linear reaction theory is constructed based on a generalized canonical form of the density matrix obtained by maximizing the Tsallis quantum entropy by averaging the observed values over the escort distribution. Generalized expressions for admittance and response functions are presented that describe the linear response of the system to a weak external mechanical impact. The paper discusses the symmetry property for the relaxation function under time reversal and the Onsager reciprocity relation for generalized susceptibility. It is shown that these properties known in classical quantum statistics remain valid for anomalous systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Further, the operators will be denoted by the caret superscript ^.

  2. The distribution \({{\hat {\rho }}_{{eq}}}\) can not only be a canonical distribution but any equilibrium distribution (in particular, a large canonical distribution—the most convenient one when calculating averages for Bose and Fermi systems). The canonical ensemble is more suitable for some other systems, for example, spin ones.

  3. The switching operator \({{\hat {a}}^{ \times }}\) conforms to the following rules [41]: \(\exp ({{\hat {a}}^{ \times }})\hat {b} = \sum {\tfrac{1}{{n!}}} {{({{\hat {a}}^{ \times }})}^{n}}\hat {b} = \sum {\tfrac{1}{{n!}}} [\hat {a}[\hat {a}..[\hat {a},\hat {b}]..] = \exp (\hat {a})\hat {b}\exp ( - \hat {a});\)\({{\hat {a}}^{ \times }}{{\hat {b}}^{ \times }} - {{\hat {b}}^{ \times }}{{\hat {a}}^{ \times }} = {{[\hat {a},\hat {b}]}^{ \times }}\).

  4. It should be recalled that operator \({{\hat {\mathcal{A}}}^{ + }}\) is called adjoint to operator \(\hat {\mathcal{A}}\) if for every pair of functions \({{\psi }_{1}}\) and \({{\psi }_{2}}\) the relation \(\left\langle {{{\psi }_{1}},\hat {\mathcal{A}}{{\psi }_{2}}} \right\rangle = \left\langle {{{{\hat {\mathcal{A}}}}^{ + }}{{\psi }_{1}},{{\psi }_{2}}} \right\rangle \) is valid. The Hermitian (or self-adjoint) operator \(\hat {\mathcal{A}}\) coincides with its adjoint \(\hat {\mathcal{A}} = {{\hat {\mathcal{A}}}^{ + }}\). The eigenvalues of the Hermitian operators are real numbers.

REFERENCES

  1. J. Havrda and F. Charvat, “Quantiication method of classiication processes. Concept of structural α-entropy,” Kybernetika 3, 30–35 (1967).

    MathSciNet  MATH  Google Scholar 

  2. Z. Daroczy, “Generalized information functions,” Inf. Control. 16 (1), 36–51 (1970).

    Article  MathSciNet  Google Scholar 

  3. C. Tsallis, “Possible generalization of Boltzmann-Gibbs statistics,” J. Stat. Phys. 52, 479–487 (1988).

    MathSciNet  MATH  Google Scholar 

  4. A. Renyi, “On measures of entropy and information,” in Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics and Probability (Univ. California Press, Berkeley, 1961), Vol. 1, pp. 547–561.

  5. A. Renyi, Probability Theory (North-Holland, Amsterdam, 1970).

    MATH  Google Scholar 

  6. E. M. F. Curado and C. Tsallis, “Generalized statistical mechanics: Connection with thermo- dynamics,” J. Phys. A: Math. Gen. 24 (2), L69–L72 (1991).

    Google Scholar 

  7. C. Beck and F. Schlögl, Thermodynamics of Chaotic Systems: An Introduction (Cambridge Univ. Press, Cambridge, 1993).

    MATH  Google Scholar 

  8. C. Tsallis, R. Mendes, and A. Plastino, “The role of constraints within generalized nonextensive statistics,” Phys. A (Amsterdam, Neth.) 261, 543–554 (1998).

  9. C. Tsallis, Introduction to Nonextensive Statistical Mechanics. Approaching a Complex World (Springer, New York, 2009).

    MATH  Google Scholar 

  10. A. Plastino and A. R. Plastino, “On the universality of thermodynamics' Legendre transform structure,” Phys. Lett. A 226, 257–263 (1997).

    Article  MathSciNet  Google Scholar 

  11. U. Tirnakli and D. F. Torres, “Exact and approximate results of non-extensive quantum statistics,” Eur. J. Phys. B 14, 691–698 (2000).

    Article  Google Scholar 

  12. E. K. Lenzi and R. S. Mendes, “Collisionless Boltzmann equation for systems obeying Tsallis distribution,” Eur. J. Phys. B 21, 401–406 (2001).

    Article  Google Scholar 

  13. S. Abe, “Heat and entropy in nonextensive thermodynamics: Transmutation from Tsallis theory to Rényi-entropy-based theory,” Phys. A (Amsterdam, Neth.) 300, 417–423 (2001).

  14. R. G. Zaripov, Self-Organization and Irreversibility in Non-Extensive Systems (Fen, Kazan, 2002) [in Russian].

  15. R. G. Zaripov, The Principles of Non-Extensive Statistical Mechanics and the Geometry of Measures of Disorder and Order (Kazan. Gos. Tekh. Univ., Kazan, 2010) [in Russian].

  16. M. Gell-Mann and C. Tsallis, Nonextensive Entropy-Interdisciplinary Applications (Oxford Univ. Press, New York, 2004).

    MATH  Google Scholar 

  17. A. V. Kolesnichenko, “To the construction of non-additive thermodynamics of complex systems on the basis of the statistics of Kurado–Tsallis,” KIAM Preprint No. 25 (Keldysh Inst. Appl. Math., Moscow, 2018).

    Google Scholar 

  18. A. V. Kolesnichenko, “To the construction of the thermodynamics of non-additive media on the basis of the statistics of Tsallis–Mendes–Plastino,” KIAM Preprint No. 23 (Keldysh Inst. Appl. Math., Moscow, 2018).

    Google Scholar 

  19. A. V. Kolesnichenko, “Two-parameter functional of entropy Sharma-Mittal as the basis of the family of generalized thermodynamics of non-extensive systems,” Math. Montisnigri 42, 74–101 (2018).

    MathSciNet  Google Scholar 

  20. A. V. Kolesnichenko, Statistical Mechanics and Thermodynamics of Tsallis Non-Additive Systems. Introduction to Theory and Applications, Vol. 87 of Synergetics: From Past to Future (Lenand, Moscow, 2019) [in Russian].

  21. A. R. Plastino, M. Casas, and A. Plastino, “A nonextensive maximum entropy approach to a family of nonlinear reaction-diffusion equations,” Phys. A (Amsterdam, Neth.) 280, 289–303 (2000).

  22. B. M. Boghosian, “Navier-Stocks equations for generalized thermostatistics,” Bras. J. Phys. 29, 91–107 (1999).

    Google Scholar 

  23. A. V. Kolesnichenko and B. N. Chetverushkin, “Kinetic derivation of a quasihydrodinamic system of equations on the base of nonextensive statistics,” Russ. J. Numer. Anal. Math. Model. 28, 547–576 (2013).

    MATH  Google Scholar 

  24. T. D. Frank and A. Daffertshofer, “Multivariate nonlinear Fokker-Planck equations and generalized thermostatistics,” Phys. A (Amsterdam, Neth.) 292, 392–410 (2001).

  25. N. Ito and C. Tsallis, “Specific heat of the harmonic oscillator within generalized equilibrium statistics,” Nuovo Cim. D 11, 907–911 (1989).

    Google Scholar 

  26. P. H. Chavanis and L. Delfini, “Dynamical stability of systems with long-range interactions: Application of the Nyquist method to the HMF model,” Eur. Phys. J. B 69, 389–429 (2009).

    Google Scholar 

  27. A. V. Kolesnichenko, “Criterion of thermal of stability and the law of distribution of particles for self-gravitating astrophysical systems within the Tsallis statistics,” Math. Montisnigri 37, 45–75 (2016).

    Google Scholar 

  28. A. V. Kolesnichenko, “To the development of statistical thermodynamics and technique îf fractal analysis for non-extensive systems based on entropy and discrimination information of Renyi,” KIAM Preprint No. 60 (Keldysh Inst. Appl. Math., Moscow, 2018).

    Google Scholar 

  29. A. Esquivel and A. Lazarian, “Tsallis statistics as a tool for studying interstellar turbulence,” Astrophys. J. 710, 125–132 (2010).

    Google Scholar 

  30. A. V. Kolesnichenko and M. Ya. Marov, “Modification of the jeans instability criterion for fractal-structure astrophysical objects in the framework of nonextensive statistics,” Solar Syst. Res. 48, 354–365 (2014).

    Article  Google Scholar 

  31. A. V. Kolesnichenko, “Power distributions for self-gravitating astrophysical systems based on nonextensive tsallis kinetics,” Solar Syst. Res. 51, 127–144 (2017).

    Article  Google Scholar 

  32. A. V. Kolesnichenko, “Modification in framework of Tsallis statistics of gravitational instability criterions of astrophysical disks with fractal structure of phase space,” Math. Montisnigri 32, 93–118 (2015).

    Google Scholar 

  33. A. V. Kolesnichenko, “On construction of the entropy transport model based on the formalism of nonextensive statistics,” Math. Models Comput. Simul. 6, 587–597 (2014).

    Article  MathSciNet  Google Scholar 

  34. A. Wehrl, “General properties of entropy,” Rev. Mod. Phys. 50, 221–260 (1978).

    Article  MathSciNet  Google Scholar 

  35. J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton Univ. Press, Princeton, N.J., 1955).

    MATH  Google Scholar 

  36. S. Abe and A. K. Rajagopal, “Validity of the second law in nonextensive quantum thermodynamics,” Phys. Rev. Lett. 91, 120601 (2003).

    Article  Google Scholar 

  37. S. Abe, “Nonadditive generalization of the quantum Kullback-Leibler divergence for measuring the degree of purification,” Phys. Rev. A 68, 032302 (2003).

    Article  Google Scholar 

  38. S. Abe, “Quantum q-divergence,” Phys. A (Amsterdam, Neth.) 344, 359–365 (2004).

  39. S. Abe, “Geometric effect in nonequilibrium quantum thermodynamics,” Phys. A (Amsterdam, Neth.) 372, 387–392 (2006).

  40. D. Zubarev, V. Morozov, and G. Röpke, Statistical Mechanics of Nonequilibrium Processes,Vol. 1: Basic Concepts, Kinetic Theory (Akademie, Berlin, 1996).

    MATH  Google Scholar 

  41. R. Kubo, “Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems,” J. Phys. Soc. Jpn. 12, 570–586 (1957).

    MathSciNet  Google Scholar 

  42. R. Kubo, M. Yokota, and S. Nakajima, “Statistical-mechanical theory of irreversible processes. II. Response to thermal disturbance,” J. Phys. Soc. Jpn. 12, 1203–1211 (1957).

    MathSciNet  Google Scholar 

  43. E. K. Lenzi and R. S. Mendes, “Collisionless Boltzmann equation for systems obeying Tsallis distribution,” Eur. J. Phys. B 21, 401–406 (2001).

    Google Scholar 

  44. E. K. Lenzi, R. S. Mendes, and A. K. Rajagopal, “Green functions based on Tsallis nonextensive statistical mechanics: Normalized q-expectation value formulation,” Phys. A (Amsterdam, Neth.) 286, 503–517 (2000).

  45. E. K. Lenzi, R. S. Mendes, and A. K. Rajagopal, “Quantum statistical mechanics for nonextensive systems,” Phys. Rev. E 59, 1398–1407 (1999).

    Google Scholar 

  46. S. Abe and Y. Okamoto, Nonextensive Statistical Mechanics and Its Applications, Vol. 560 of Lect. Notes Phys. (Springer, Berlin, New York, 2001), Chap. 2.

  47. S. Abe, “Axioms and uniqueness theorem for Tsallis entropy,” Phys. Lett. A 271, 74–79 (2000).

    MathSciNet  MATH  Google Scholar 

  48. A. M. Gleason, “Measures on the closed subspaces of a Hilbert space,” Math. J. (Indiana Univ.) 6, 885–893 (1957).

  49. A. V. Kolesnivhenko, “To the construction of the thermodynamics of quantum nonextensive systems in the framework of the statistics of Tsallis,” KIAM Preprint No. 16 (Keldysh Inst. Appl. Math., Moscow, 2019).

    Google Scholar 

  50. E. T. Jaynes, “Information theory and statistical mechanics,” in Statistical Physics, Brandeis Lectures (Springer, Dordrecht, 1963), Vol. 3, p. 160.

    Google Scholar 

  51. A. V. Kolesnivhenko, “To the derivation of symmetry of matrix of kinetic coefficients Onsager in framework of the nonextensive statistical mechanics of Tsallis,” KIAM Preprint No. 15 (Keldysh Inst. Appl. Math., Moscow, 2019).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kolesnichenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Pertsovskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnichenko, A.V. Modeling the Linear Response from a Quantum Nonextensive System to a Dynamic External Disturbance. Math Models Comput Simul 12, 647–659 (2020). https://doi.org/10.1134/S2070048220050099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048220050099

Keywords:

Navigation