Skip to main content
Log in

Calculating the Natural Atmospheric Radiation Using the General Circulation Model of the Earth’s Lower and Middle Atmosphere

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

The paper describes a block for calculating the Earth’s natural atmospheric radiation in the IR range developed for the general circulation model simulating the lower and middle atmosphere. This block uses the new parametrization of molecular absorption in the frequency range from 10 to 2000 cm−1 at the altitude ranging from the Earth’s surface to 76 km. The algorithm for constructing this parametrization takes into account the change in the gas composition of the atmosphere with altitude and has some other significant advantages. In addition, for the numerical solution of the radiation transfer equation, the discrete ordinate method and the computational zenith angle grid with the step of about nine degrees are used. The results of the line-by-line calculations of the Earth’s internal atmospheric radiation field are compared with the results of the calculations performed using parametrization, and it is shown that the presented parametrization is accurate in the lower and middle atmosphere both in the absence of clouds and in the presence of cloud layers with a significant optical thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Yu. M. Timofeev and A. V. Vasilev, Theoretical Foundations of Atmospheric Optics (Nauka, St. Petersburg, 2003) [in Russian].

    Google Scholar 

  2. K. Ya. Kondratev, Actinometry (Gidrometeoizdat, Leningrad, 1965) [in Russian].

    Google Scholar 

  3. Kuo-Nan Lion, An Introduction to Atmospheric Radiation (Academic, New York, 1980).

    Google Scholar 

  4. T. A. Sushkevich, Mathematical Models of Radiation Transfer (BINOM, Labor. Znanii, Moscow, 2006) [in Russian].

    Google Scholar 

  5. S. D. Tvorogov, “Some aspects of the problem of representation of the absorption function by a series of exponents,” Atmos. Ocean. Opt. 7 (3), 165–171 (1994).

    Google Scholar 

  6. S. D. Tvorogov, L. I. Nesmelova, and O. B. Rodimova, “Representation of the transmission function by the series of exponents,” Atmos. Ocean. Opt. 9, 239–242 (1996).

    Google Scholar 

  7. L. I. Nesmelova, O. B. Rodimova, and S. D. Tvorogov, “Calculation of transmission functions in near infrared region using series of exponents,” Atmos. Ocean. Opt. 10, 923–927 (1997).

    Google Scholar 

  8. L. I. Nesmelova, O. B. Rodimova, and S. D. Tvorogov, “Application of exponential series to calculation of radiative fluxes in the molecular atmosphere,” Atmos. Ocean. Opt. 12, 735–739 (1999).

    Google Scholar 

  9. S. D. Tvorogov, “Application of exponential series to frequency integration of the radiative transfer equation,” Atmos. Ocean. Opt. 12, 730–734 (1999).

    Google Scholar 

  10. S. D. Tvorogov and O. B. Rodimova, “Calculation of transmission functions at small pressures,” Atmos. Ocean. Opt. 21, 797–803 (2008).

    Google Scholar 

  11. B. A. Fomin, “Method for parameterization of gas absorption of atmospheric radiation giving the k-distribution with minimum number of terms,” Atmos. Ocean. Opt. 16, 244–246 (2003).

    Google Scholar 

  12. B. A. Fomin, “A k-distribution technique for radiative transfer simulation in inhomogeneous atmosphere: 1. FKDM, fast k-distribution model for the longwave,” J. Geophys. Res. 109, D02110 (2004).

    Google Scholar 

  13. B. A. Fomin and P. M. Correa, “A k-distribution technique for radiative transfer simulation in inhomogeneous atmosphere: 2. FKDM, fast k-distribution model for the shortwave,” J. Geophys. Res. 110, D02106 (2005).

    Google Scholar 

  14. E. J. Mlawer, S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, “Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave,” J. Geophys. Res. D 102, 663–682 (1997).

    Google Scholar 

  15. S. Cusack, J. M. Edwards, and J. M. Crowther, “Investigating k-distributing method for parametrizing gaseous absorption in the Hadley Centre Climate Model,” J. Geophys. Res. 104, 2051–2057 (1999).

    Google Scholar 

  16. T. Nakajima, M. Tsukamoto, Y. Tsushima, A. Numaguti, and T. Kimura, “Modeling of the radiation process in an atmospheric general circulation model,” Appl. Opt. 39, 4869–4878 (2000).

    Google Scholar 

  17. R. J. Hogan, “The full-spectrum correlated-k method for longwave atmospheric radiative transfer using an effective Planck function,” J. Atmos. Sci. (2010).

  18. B. N. Chetverushkin, Mathematical Modeling of Problems of Radiating Gas Dynamics (Nauka, Moscow, 1985) [in Russian].

    MATH  Google Scholar 

  19. A. V. Shilkov and M. N. Gerthev, “Verification of the Lebesgue averaging method,” Math. Models Comput. Simul. 8, 93–107 (2016).

    MathSciNet  Google Scholar 

  20. B. N. Chetverushkin, I. V. Mingalev, K. G. Orlov, V. M. Chechetkin, V. S. Mingalev, and O. V. Mingalev, “Gas-dynamic general circulation model of the lower and middle atmosphere of the Earth,” Math. Models Comput. Simul. 10, 176–185 (2018).

    MathSciNet  MATH  Google Scholar 

  21. I. V. Mingalev, E. A. Fedotova, and K. G. Orlov, “Parameterization of the infrared molecular absorption in the Earth’s lower and middle atmosphere,” Atmos. Ocean. Opt. 31, 582–589 (2018).

    Google Scholar 

  22. L. S. Rothman et al., “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Rad. Transfer 130, 4–50 (2013).

    Google Scholar 

  23. E. J. Mlawer et al., “Development and recent evaluation of the MT CKD model of continuum absorption,” Phylos. Trans. R. Soc. 370, 2520–2556 (2012).

    Google Scholar 

  24. N. I. Ignat’ev, I. V. Mingalev, A. V. Rodin, and E. A. Fedotova, “A new version of the discrete ordinate method for the calculation of the intrinsic radiation in horizontally homogeneous atmospheres,” Comput. Math. Math. Phys. 55, 1713–1726 (2015).

    MathSciNet  MATH  Google Scholar 

  25. A. A. Samarskii and E. S. Nikolaev, Methods for Solving Grid Equations (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  26. I. V. Mingalev, E. A. Fedotova, and K. G. Orlov, “The effect of optically thick cloud layers on heating of the atmosphere self emission,” Sovrem. Probl. Distants. Zondir. Zemli Kosmosa, 14 (5), 100-108 (2017).

    Google Scholar 

  27. R. A. McClatchey, H.-J. Bolle, and K. Ya. Kondratyev, “A preliminary cloudless standard atmosphere for radiation computation,” World Climate Research Programme WCP112, WMO/TD-No. 24 (Int. Assoc. Meteorol. Atmos. Phys., Radiation Commission, 1986).

  28. V. A. Gasilov, P. A. Kuchugov, O. G. Olkhovskaya, and B. N. Chetverushkin, “Solution of the self-adjoint radiative transfer equation on hybrid computer systems,” Comput. Math. Math. Phys. 56, 987–995 (2016).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Mingalev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Pertsovskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chetverushkin, B.N., Mingalev, I.V., Fedotova, E.A. et al. Calculating the Natural Atmospheric Radiation Using the General Circulation Model of the Earth’s Lower and Middle Atmosphere. Math Models Comput Simul 12, 803–815 (2020). https://doi.org/10.1134/S207004822005004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207004822005004X

Keywords:

Navigation