Skip to main content
Log in

Experimental Methods to Study the Mechanisms of Interaction of Lipid Membranes with Low-Molecular-Weight Drugs

  • REVIEW ARTICLE
  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

The review is devoted to methods for studying how lipid membranes interact with low-molecular-weight drugs. The following methods are considered in the review: IR and EPR spectroscopy, fluorescence analysis, differential scanning calorimetry, and microscopy methods. Methods for characterizing the size and charge of vesicles are also considered: dynamic light scattering and nanoparticle tracking analysis. Methods are divided into those requiring additional labels and label-free. An important objective of the review is to find the optimal research strategy by selecting informative, modern approaches to studying the interactions of drugs with lipid membranes, as well as analyze the latest achievements of instrumental methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Manaia, E.B., et al., Int. J. Nanomed., 2017, vol. 12, pp. 4991–5011.

    Article  CAS  Google Scholar 

  2. Kinuta, M. and Takei, K., Cell Struct. Funct., 2002, vol. 27, no. 2, pp. 63–69.

    Article  CAS  PubMed  Google Scholar 

  3. Kulikov, K.G. and Koshlan, T.V., Zh. Tekh. Fiz., 2015, vol. 85, no. 12, pp. 26–32.

    Google Scholar 

  4. Yaroslavov, A.A., et al., Colloid J., 2011, vol. 73, no. 3, pp. 430–435.

    Article  CAS  Google Scholar 

  5. Sanchez-Purra, M., et al., Int. J. Pharm., 2016, vol. 511, no. 2, pp. 946–956.

    Article  CAS  PubMed  Google Scholar 

  6. Kinuta, M., et al., Proc. Natl. Acad. Sci. U. S. A., 2002, vol. 99, no. 5, pp. 2842–2847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Deygen, I.M. and Kudryashova, E.V., Russ. J. Bioorg. Chem., 2014, vol. 40, no. 5, pp. 547–557.

    Article  CAS  Google Scholar 

  8. Eremenko, A.V., et al., Electroanalysis, 2012, vol. 24, no. 3, pp. 573–580.

    Article  CAS  Google Scholar 

  9. Deygen, I.M. and Kudryashova, E.V., Colloids Surf., 2016, vol. 141, pp. 36–43.

    Article  CAS  Google Scholar 

  10. Filipe, V., Hawe, A., and Jiskoot, W., Pharm. Res, 2010, vol. 27, no. 5, pp. 796–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Le-Deygen, I.M., et al., Nanomed. Nanotechnol., Biol. Med. Elsevier Inc., 2019, vol. 21, p. 102 065.

    Google Scholar 

  12. Shin, M., et al., Mol. Pharm., 2018, vol. 15, no. 3, pp. 721–728.

    Article  CAS  PubMed  Google Scholar 

  13. González-Rodríguez, M.L. and Rabasco, A.M., Expert Opin. Drug Deliv., 2011, vol. 8, no. 7, pp. 857–871.

    Article  PubMed  CAS  Google Scholar 

  14. Yaroslavov, A.A., et al., Adv. Colloid Interface Sci., 2008, vol. 142, nos. 1–2, pp. 43–52.

    Article  CAS  PubMed  Google Scholar 

  15. Smith, M.C., et al., Anal. Bioanal. Chem., 2017, vol. 409, no. 24, pp. 5779–5787.

    Article  CAS  PubMed  Google Scholar 

  16. Kim, M.W., Niidome, T., and Lee, R., Mar. Drugs, 2019, vol. 17, no. 10, pp. 581–593.

    Article  CAS  PubMed Central  Google Scholar 

  17. Singh, S., Int. J. Nanomed., 2018, vol. 13, pp. 11–13.

    Article  CAS  Google Scholar 

  18. Le-Deygen, I.M., et al., Chem. Phys. Lipids, 2020, vol. 228, p. 104 891.

    Article  CAS  Google Scholar 

  19. Rouf, M.A., et al., J. Liposome Res., 2009, vol. 19, no. 4, pp. 322–331.

    Article  CAS  PubMed  Google Scholar 

  20. Robson, R.J. and Dennis, E.A., J. Phys. Chem., 1977, vol. 81, no. 11, pp. 1075–1078.

    Article  CAS  Google Scholar 

  21. Biltonen, R.L. and Lichrenberg, D., Chem. Phys. Lipids, 1993, vol. 64, pp. 129–142.

    Article  CAS  Google Scholar 

  22. Bilge, D., et al., Spectrochim. Acta, A. Mol. Biomol. Spectrosc., Elsevier B.V., 2014, vol. 130, pp. 250–256 .

    CAS  Google Scholar 

  23. Di Foggia, M., et al., J. Therm. Anal. Calorim., 2017, vol. 127, no. 2, pp. 1407–1417.

    Article  CAS  Google Scholar 

  24. Wei, X., et al., Mol. Pharm., 2017, vol. 14, no. 12, pp. 4339–4345.

    Article  CAS  PubMed  Google Scholar 

  25. Li, T., et al., J. Control. Release, 2018, vol. 288, pp. 96–110.

    Article  CAS  PubMed  Google Scholar 

  26. Mady, M.M., et al., Cell Biochem. Biophys., 2012, vol. 62, no. 3, pp. 481–486.

    Article  CAS  PubMed  Google Scholar 

  27. Perinelli, D.R., et al., Int. J. Pharm. Elsevier, 2017, vol. 534, nos. 1–2, pp. 81–88.

    Article  CAS  Google Scholar 

  28. Pereira-Leite, C., et al., J. Phys. Chem. B, 2012, vol. 116, no. 46, pp. 13 608–13 617.

    Article  CAS  Google Scholar 

  29. Cipolla, D., et al., Pharm. Res., 2016, vol. 33, no. 11, pp. 2748–2762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cipolla, D., et al., RSC Adv., 2016, vol. 6, no. 8, pp. 6223–6233.

    Article  CAS  Google Scholar 

  31. Feng, L., et al., Biomaterials, 2018, vol. 181, pp. 81–91.

    Article  CAS  PubMed  Google Scholar 

  32. Kleinschmidt, J.H., Lipid–Protein Interactions : Methods and Protocols, New York: Humana Press, 2013.

    Book  Google Scholar 

  33. Toyran, N. and Severcan, F., J. Mol. Struct., 2007, vol. 839, nos. 1–3, pp. 19–27.

    Article  CAS  Google Scholar 

  34. Deygen, I.M., et al., Langmuir, 2016, vol. 32, no. 42, pp. 10 861–10 869.

    Article  CAS  Google Scholar 

  35. Manrique-Moreno, M., et al., Biochim. Biophys. Acta, 2009, vol. 1788, no. 6, pp. 1296–1303.

    Article  PubMed  CAS  Google Scholar 

  36. Lewis, R.N., et al., Biophys. J., 1994, vol. 67, no. 6, pp. 2367–2375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Manrique-Moreno, M., et al., Lett. Drug Des. Discov., 2009, vol. 7, no. 1, pp. 50–56.

    Article  Google Scholar 

  38. Kuć, M., et al., Chem. Phys., 2015, vol. 458, pp. 9–17.

    Article  CAS  Google Scholar 

  39. Baird, C.L., Courtenay, E.S., and Myszka, D.G., Anal. Biochem., 2002, vol. 310, no. 1, pp. 93–99.

    Article  CAS  PubMed  Google Scholar 

  40. Ruozi, B., et al., Int. J. Nanomed., 2011, vol. 6, pp. 557–563.

    Article  CAS  Google Scholar 

  41. Robson, A.L., et al., Front. Pharmacol., 2018, vol. 9, pp. 1–8.

    Article  CAS  Google Scholar 

  42. Ruozi, B., et al., Eur. J. Pharm. Sci., 2005, vol. 25, no. 1, pp. 81–89.

    Article  CAS  PubMed  Google Scholar 

  43. Takahashi, N., et al., J. Pharm. Sci. Am. Pharm. Assoc., 2018, vol. 107, no. 2, pp. 717–726.

    Article  CAS  Google Scholar 

  44. Johnston, M.J.W., et al., J. Liposome Res., 2008, vol. 18, no. 2, pp. 145–157.

    Article  CAS  PubMed  Google Scholar 

  45. Zhigaltsev, I.V., et al., J. Control. Release, 2005, vol. 104, no. 1, pp. 103–111.

    Article  CAS  PubMed  Google Scholar 

  46. Shamrakov, D., et al., Int. J. Pharm., 2018, vol. 547, nos. 1–2, pp. 648–655.

    Article  PubMed  CAS  Google Scholar 

  47. Chang, W.-H., et al., Nanoscale, 2018, vol. 10, no. 6, pp. 2820–2824.

    Article  PubMed  Google Scholar 

  48. Alves, A.C., et al., Sci. Rep., 2017, vol. 7, no. 1, pp. 1–11.

    Article  CAS  Google Scholar 

  49. Lianos, P., Mukhopadhyay, A.K., and Georghiou, S., Photochem. Photobiol., 1980, vol. 32, no. 3, pp. 415–419.

    Article  CAS  Google Scholar 

  50. Macdonald, A.G., et al., Biochim. Biophys. Acta, 1988, vol. 938, pp. 231–242.

    Article  CAS  PubMed  Google Scholar 

  51. Beregovaya, E.G., et al., Biopolimery Kletka, 1993, vol. 9, no. 5, pp. 19–26.

    Google Scholar 

  52. Boldyrev, I., et al., New BODIPY lipid probes for fluorescence studies of membranes, J. Lipid Res., 2007, vol. 48, no. 7, pp. 1518–1532.

    Article  CAS  PubMed  Google Scholar 

  53. Kudryashova, E.V., Funktsionirovanie i struktura belkov na poverkhnostyakh razdela faz. Novye metody issledovaniya (The Functioning and Structure of Proteins on Phase Interfaces: New Research Methods), Palmarium Academic Publishing AV Akademikerverlag GmbH and Co., 2013.

  54. Paul, B.K., Ghosh, N., and Mukherjee, S., Colloids Surf., 2018, vol. 170, pp. 36–44.

    Article  CAS  Google Scholar 

  55. Mittag, J.J., et al., Eur. J. Pharm. Biopharm., 2017, vol. 119, pp. 215–223.

    Article  CAS  PubMed  Google Scholar 

  56. Cundall, R.B. and Dale, R.E., Time-Resolved Fluorescence Spectroscopy in Biochemistry and Biology, Cundall, R.B. and Dale, R.E., Eds., New York: Plenum Press, 1983, pp. 555–605.

    Book  Google Scholar 

  57. Krishnamoorthy, G., J. Biosci., Springer India, 2018, vol. 43, no. 3, pp. 555–567.

    CAS  Google Scholar 

  58. Kudryashova, E.V., Gladilin, A.K., and Levashov, A.V., Usp. Biol. Khim., 2002, vol. 42, pp. 257–294.

    CAS  Google Scholar 

  59. Poojari, C., et al., Chem. Phys. Lipids, 2019, vol. 223, p. 104 784.

    Article  CAS  Google Scholar 

  60. Van Slooten, M.L., et al., J. Pharm. Sci., 2000, vol. 89, no. 12, pp. 1605–1619.

    Article  CAS  PubMed  Google Scholar 

  61. Borst, J.W., et al., Biochim. Biophys. ActaMol. Cell Biol. Lipids, 2000, vol. 1487, no. 1, pp. 61–73.

    Article  CAS  Google Scholar 

  62. Ivanov, L.V. and Kartel’, N.T., Rep. Natl. Acad. Sci. Ukr., 2012, vol. 5, pp. 139–145.

    Google Scholar 

  63. Zhao, L., et al., Int. J. Pharm., 2007, vol. 338, nos. 1–2, pp. 258–266.

    Article  CAS  PubMed  Google Scholar 

  64. Dicko, A., et al., Int. J. Pharm., 2010, vol. 391, nos. 1–2, pp. 248–259.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research (project no. 18-33-00134).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Le-Deygen.

Ethics declarations

The work has no studies involving humans or animals as subjects of the study.

Conflict of Interests

Authors declare they have no conflicts of interests.

Additional information

Translated by N. Onishchenko

Abbreviations: 16-DSA, 16-doxylstearic acid; 5-DSA, 5-doxylsteraic acid; AFM, atomic force microscopy; DPPC, dipalmitoylphosphatidylcholine; DSC, differential scanning calorimetry; DLS, dynamic light scattering; CL, cardiolipin; MR, mass ratio; SAXS, small angle X-ray scattering; ATIR, attenuated total internal reflection; NTA, nanoparticle tracking analysis; TRFA, time-resolved fluorescence anisotropy; HFI, hyperfine interaction; HFS, hyperfine splitting; SEM, scanning electron microscopy; FCS, fluorescence correlation spectroscopy; LE, loading efficiency; ESEM, environmental scanning electron microscopy.

Corresponding authors: e-mail: i.m.deygen@gmail.com.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le-Deygen, I.M., Skuredina, A.A. & Kudryashova, E.V. Experimental Methods to Study the Mechanisms of Interaction of Lipid Membranes with Low-Molecular-Weight Drugs. Russ J Bioorg Chem 46, 480–497 (2020). https://doi.org/10.1134/S1068162020040123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162020040123

Keywords:

Navigation