Skip to main content
Log in

Modified Mechanical Coating Technique for the Preparation of Nanohydroxyapatite Coated Ti–6Al–4V Dental Implants

  • NANOSCALE AND NANOSTRUCTURED MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

To improve the mechanical and biological properties and also to increase the lifetime and performance of Ti–6Al–4V dental implants they were coated by hydroxyapatite nanoparticles using a modified mechanical coating technique. A novel milling vial was developed to simultaneously coat hydroxyapatite nanoparticles on the Ti–6Al–4V substrates. The modified dimensions of the milling vial and optimized milling operation parameters were presented. The coating operation was applied for 4 hours with a ball to powder weight ratio of 30 : 1. Furthermore the bioactivity of the coatings was studied by placing the coating in a simulated body fluid for 14 days. SEM and FTIR analysis indicated the bone bonding ability of the coating by its capability of forming hydroxyapatite on the surface of the coating. The coating operation resulted in the formation of a uniform nanoparticle containing coating and significantly decreased the cost and complexity of the nanohydroxyapatite coating process on Ti–6Al–4V substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Niespodziana, K., Jurczyk, K., Jakubowicz, J., et al., Mater. Chem. Phys., 2010, vol. 123, pp. 160–165.

    CAS  Google Scholar 

  2. Fujisawa, A., Kokubyo Gakkai Zasshi, 2004, vol. 71, pp. 112–119.

    CAS  Google Scholar 

  3. Okazaki, Y., Rao, S., Ito, Y., Tateishi, T., et al., Biomaterials, 1998, vol. 19, pp. 1197–1215.

    CAS  Google Scholar 

  4. Song, W., Tu, B., Lin, J., et al., Biocybern. Biomed. Eng., 2015, vol. 35, no. 4, pp. 296–303.

    Google Scholar 

  5. Webster, T.J., Ergun, C., Doremus, R.H., et al., J. Biomed. Mater. Res., Part A, 2003, vol. 67, pp. 975–980.

    Google Scholar 

  6. Bovand, D., Yousefpour, M., Rasouli, S., et al., Mater. Des., 2015, vol. 65, pp. 447–453.

    CAS  Google Scholar 

  7. Wang, K., Mater. Sci. Eng., A, 1996, vol. 213, pp. 134–137.

    Google Scholar 

  8. Pilliar, R.M., Cameron, H.U., Welsh, R.P., et al., Clin. Orthop. Relat. Res., 1981, vol. 156, pp. 249–257.

  9. Tolstunov, L., J. Oral. Implantol., 2014, vol. 40, pp. 365–370.

    Google Scholar 

  10. Chrzanowski, W., Kondyurin, A., Lee, J.H., et al., J. Mater. Sci.: Mater. Med., 2012, vol. 23, pp. 2203–2215.

    CAS  Google Scholar 

  11. Chrzanowski, W., Szade, J., Hart, A.D., et al., J. Biomater. Appl., 2012, vol. 26, pp. 707–731.

    CAS  Google Scholar 

  12. Jinno, T., Kirk, S.K., Morita, S., et al., J. Arthroplasty, 2004, vol. 19, pp. 102–109.

    Google Scholar 

  13. Sul, Y., Johansson, C., Byon, E., et al., Biomaterials, 2005, vol. 26, pp. 6720–6730.

    CAS  Google Scholar 

  14. Sul, Y.T., Biomaterials, 2003, vol. 24, pp. 3893–3907.

    CAS  Google Scholar 

  15. Suchanek, W. and Yoshimura, M., J. Mater. Res., 1998, vol. 13, no. 1, pp. 94–117.

    CAS  Google Scholar 

  16. Komath, M., Varma, H.K., and Sivakumar, R., Bull. Mater. Sci., 2000, vol. 23, no. 2, pp. 135–140.

    CAS  Google Scholar 

  17. Hench, L.L. and Kokubo, T., in Handbook of Biomaterial Properties, Black, J. and Hastings, G., Eds., Springer, 1998, pp. 355–363.

  18. Samuneva, B., Kozhukharov, V., Trapalis, C., et al., J. Mater. Sci., 1993, vol. 28, no. 9, pp. 2353–2360.

    CAS  Google Scholar 

  19. Hannora, A.E. and Ataya, S., J. Alloys Compd., 2016, vol. 658, pp. 222–233.

    CAS  Google Scholar 

  20. Ratner, B.D., Hoffman, A.S., Schoen, F.J., and Lemons, J.E., Biomaterials Science, An Introduction to Materials in Medicine, Academic Press, 2004.

    Google Scholar 

  21. Wei, D., Zhou, Y., Jia, D., et al., Ceram. Int., 2008, vol. 34, pp. 1139–1144.

    CAS  Google Scholar 

  22. Un, S. and Durucan, C., J. Biomed. Mater. Res.,Part B, 2009, vol. 90, pp. 574–583.

    Google Scholar 

  23. Wang, J., Chao, Y., Wan, Q., et al., J. Mater. Sci.: Mater. Med., 2009, vol. 20, pp. 1047–1055.

    CAS  Google Scholar 

  24. Hench, L.L. and Wilson, J., An Introduction to Bioceramics, vol. 1 of Advanced Series in Ceramics, Singapore: World Scientific Publ., 1998.

  25. Fathi, M.H. and Hanifi, A., Mater. Lett., 2007, vol. 61, p. 3978.

    CAS  Google Scholar 

  26. Fathi, M.H. and Zahrani, E.M., J. Cryst. Growth, 2009, vol. 311, pp. 1392–1403.

    CAS  Google Scholar 

  27. Xiao, X.F., Liu, R.F., and Zheng, Y.Z., Surf. Coat. Technol., 2006, vol. 200, no. 14, pp. 4406–4413.

    CAS  Google Scholar 

  28. Bose, S., High Temperature Coatings, Butterworth–Heinemann, 2011.

    Google Scholar 

  29. Nakahira, A. and Eguchi, K., J. Ceram. Process. Res., 2001, vol. 2, pp. 108–112.

    Google Scholar 

  30. Salman, S., Gunduz, O., Yilmaz, S., et al., Ceram. Int., 2009, vol. 35, pp. 2965–2971.

    CAS  Google Scholar 

  31. TOPAS. 4.1., Karlsruhe: Bruker AXS, 2007.

  32. Zhang, B.G.X., Myers, D.E., Wallace, G.G., et al., Int. J. Mol. Sci., 2014, vol. 15, no. 7, pp. 11 878–11 921.

    Google Scholar 

  33. Chandrasekar, A., Sagadevan, S., and Dakshnamoorthy, A., Int. J. Phys. Sci., 2013, vol. 32, no. 8, pp. 1639–1645.

    Google Scholar 

  34. Choi, D., Marra, K., and Kumta, P.N., Mater. Res. Bull., 2004, vol. 39, pp. 417–432.

    CAS  Google Scholar 

  35. Cengiz, B., Gokce, Y., Yildiz, N., et al., Colloids Surf., A, 2008, vol. 322, pp. 29–33.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taghi Isfahani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossein Ahmadzadeh, Isfahani, T. & Kharazi, A.Z. Modified Mechanical Coating Technique for the Preparation of Nanohydroxyapatite Coated Ti–6Al–4V Dental Implants. Prot Met Phys Chem Surf 56, 766–771 (2020). https://doi.org/10.1134/S2070205120040036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205120040036

Keywords:

Navigation