Skip to main content
Log in

Corrosion of Copper in 0.1 M Hydrochloric Acid Solution with Benzotriazole as Corrosion Inhibitor

  • PHYSICOCHEMICAL PROBLEMS OF MATERIALS PROTECTION
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Corrosion inhibition properties of benzotriazole were studied in 0.1 M hydrochloric acid solution for copper samples with different roughness levels using open-circuit potential, potentiodynamic polarization, electrochemical impedance, and weight loss measurements. According to the results, inhibition properties were improved because of an increase in surface roughness leading to an increase in inhibition efficiency (up to 99 and 91% for the rough and smooth surfaces, respectively). Adsorption of benzotriazole on copper surfaces follows Langmuir isotherm. Due to roughening, the adsorption free energy changed from ‒25.9 kJ mol–1 for the polished samples to –27.6 kJ mol–1 for the rough sample. Adsorption of the inhibitor on both surfaces was mainly physisorption. Adsorption entropy values for polished and shot-peened samples were 11.4 and 13 J mol–1 K–1, respectively. All data obtained from weight loss, Tafel polarization, and EIS tests were in good agreement. FTIR test, showed a peak between 740 and 745 cm–1 that is associated with C–H bonds. The intensity of peak was higher in the case of shot-peened samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Bastidas, D.M., Surf. Interface Anal., 2006, vol. 38, pp. 1146–1152.

    CAS  Google Scholar 

  2. Aliofkhazraei, M., Corrosion Inhibitors, Principles and Recent Applications, BoD-Books on Demand, 2018.

    Google Scholar 

  3. Antonijević, M.M., Milić, S.M., and Petrović, M.B., Corros. Sci., 2009, vol. 51, pp. 1228–1237.

    Google Scholar 

  4. Sherif, E.-S.M., Erasmus, R., and Comins, J., Corros. Sci., 2008, vol. 50, pp. 3439–3445.

    CAS  Google Scholar 

  5. Cano, E., Polo, J., La Iglesia, A., Bastidas, J., Adsorption, 2004, vol. 10, pp. 219–225.

    CAS  Google Scholar 

  6. Askari, M., Aliofkhazraei, M., Ghaffari, S., Hajizadeh, A., J. Nat. Gas Sci. Eng., 2018, vol. 58, pp. 92–114.

    CAS  Google Scholar 

  7. Issaadi, S., Douadi, T., and Chafaa, S., Appl. Surf. Sci., 2014, vol. 316, pp. 582–589.

    CAS  Google Scholar 

  8. Fateh, A., Aliofkhazraei, M., and Rezvanian, A., Arabian J. Chem., 2017, vol. 13, no. 1, pp. 481–544.

    Google Scholar 

  9. Toorani, M. and Aliofkhazraei, M., Surf. Interfaces, 2019, vol. 14, pp. 262–295.

    CAS  Google Scholar 

  10. Amini, M., Aliofkhazraei, M., Kashani, A.N., and Rouhaghdam, A.S., Int. J. Electrochem. Sci., 2017, vol. 12, pp. 8708–8732.

    CAS  Google Scholar 

  11. Finšgar, M. and Milošev, I., Corros. Sci., 2010, vol. 52, pp. 2737–2749.

    Google Scholar 

  12. Subramanian, R. and Lakshminarayanan, V., Corros. Sci., 2002, vol. 44, pp. 535–554.

    CAS  Google Scholar 

  13. Mansfeld, F. and Smith, T., Corrosion, 1973, vol. 29, pp. 105–107.

    CAS  Google Scholar 

  14. Barmatov, E., Hughes, T., and Nagl, M., Proc. CORROSION 2014, NACE Int., San Antonio, TX, 2014.

  15. Ghareba, S., Kwan, S., and Omanovic, S., J. Electrochem. Sci. Eng., 2015, vol. 5, pp. 157–172.

    CAS  Google Scholar 

  16. Bagherifard, S., Ghelichi, R., and Guagliano, M., Appl. Surf. Sci., 2012, vol. 258, pp. 6831–6840.

    CAS  Google Scholar 

  17. ASTM G1-03: Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens, West Conshohocken, PA: ASTM Int., 2004.

  18. Li, X., Deng, S., Fu, H., and Li, T., Electrochim. Acta, 2009, vol. 54, pp. 4089–4098.

    CAS  Google Scholar 

  19. Designation A., Standard Reference Test Method for Making Potentiostatic and Potentiodynamic Anodic Polarization Measurements, Conshohocken, PA: ASTM Int., 1999. ASTM G5-94: Standard Reference Test Method for Making Potentiostatic and Potentiodynamic Anodic Polarization Measurements, Conshohocken, PA: ASTM Int., 1999.

  20. Esmailzadeh, S., Aliofkhazraei, M., and Sarlak, H., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, pp. 976–989.

    CAS  Google Scholar 

  21. Toorani, M., Aliofkhazraei, M., and Rouhaghdam, A.S., Surf. Coat. Technol., 2018, vol. 352, pp. 561–580.

    CAS  Google Scholar 

  22. Toorani, M., Aliofkhazraei, M., Naderi, R., Golabadi, M., and Rouhaghdam, A.S., J. Ind. Eng. Chem., 2017, vol. 53, pp. 213–227.

    CAS  Google Scholar 

  23. ASTM G106–89: Standard Practice for Verification of Algorithm and Equipment for Electrochemical Impedance Measurements, West Conshohocken, PA: ASTM Int., 2010.

  24. Toorani, M., Aliofkhazraei, M., and Naderi, R., J. Alloys Compd., 2019, vol. 785, pp. 669–683.

    CAS  Google Scholar 

  25. Golabadi, M., Aliofkhazraei, M., Toorani, M., and Rouhaghdam, A.S., J. Ind. Eng. Chem., 2017, vol. 47, pp. 154–168.

    CAS  Google Scholar 

  26. Ghaffari, S., Aliofkhazraei, M., Darband, G.B., Zakeri, A., and Ahmadi, E., Surf. Interfaces, 2019, vol. 17, p. 100 340.

    Google Scholar 

  27. Wang, J.Yu. and Dong, B., Surf. Coat. Technol., 2006, vol. 200, pp. 4777–4781.

    CAS  Google Scholar 

  28. Mordyuk, B., Prokopenko, G., Vasylyev, M., and Iefimov, M., Mater. Sci. Eng., A, 2007, vol. 458, pp. 253–261.

    Google Scholar 

  29. Lu, K. and Lu, J., Mater. Sci. Eng., A, 2004, vol. 375, pp. 38–45.

    Google Scholar 

  30. Liu, W., Dong, J., Zhang, P., Zhai, C., and Ding, W., Mater. Trans., 2009, vol. 50, pp. 791–798.

    CAS  Google Scholar 

  31. Arancibia, A., Henriquez–Roman, J., Paez, M., Padilla-Campos, L., Zagal, J., Costamagna, J., and Cárdenas-Jirón, G., J. Solid State Electrochem., 2006, vol. 10, pp. 894–904.

    CAS  Google Scholar 

  32. Tromans, D., J. Electrochem. Soc., 1998, vol. 145, pp. L42–L45.

    CAS  Google Scholar 

  33. Allabergenov, K. and Kurbanov, F., Zashch. Met, 1979, vol. 15, pp. 472–473.

    CAS  Google Scholar 

  34. Ismail, K.M., Electrochim. Acta, 2007, vol. 52, pp. 7811–7819.

    CAS  Google Scholar 

  35. Askari, M., Aliofkhazraei, M., and Afroukhteh, S., J. Nat. Gas Sci. Eng., 2019, vol. 71, p. 102 971.

    Google Scholar 

  36. Sherif, E.-S.M., Erasmus, R., and Comins, J., J. Colloid Interface Sci., 2007, vol. 306, pp. 96–104.

    CAS  Google Scholar 

  37. Vogt, M., Nichols, R., Magnussen, O., and Behm, R., J. Phys. Chem. B, 1998, vol. 102, pp. 5859–5865.

    CAS  Google Scholar 

  38. Gerengi, H., Slepski, P., and Bereket, G., Mater. Corros., 2013, vol. 64, pp. 1024–1031.

    CAS  Google Scholar 

  39. Avci, G., Colloids Surf., A, 2008, vol. 317, pp. 730–736.

    CAS  Google Scholar 

  40. Crundwell, F., Electrochim. Acta, 1992, vol. 37, pp. 2707–2714.

    CAS  Google Scholar 

  41. Khaled, K., Electrochim. Acta, 2009, vol. 54, pp. 4345–4352.

    CAS  Google Scholar 

  42. Zhao, M.-C., Liu, M., Song, G.-L., and Atrens, A., Corros. Sci., 2008, vol. 50, pp. 3168–3178.

    CAS  Google Scholar 

  43. Kumar, K.V., Pillai, M.S.N., and Thusnavis, G.R., J. Mater. Sci. Technol., 2011, vol. 27, pp. 1143–1149.

    CAS  Google Scholar 

  44. Feng, Y. and Cheng, Y.F., J. Mater. Eng. Perform., 2015, vol. 24, pp. 4997–5001.

    CAS  Google Scholar 

  45. Toorani, M., Aliofkhazraei, M., Golabadi, M., and Rouhaghdam, A.S., J. Alloys Compd., 2017, vol. 719, pp. 242–255.

    CAS  Google Scholar 

  46. Solmaz, R., Kardaş, G., Yazıcı, B., and Erbil, M., Colloids Surf., A, 2008, vol. 312, pp. 7–17.

    CAS  Google Scholar 

  47. Omanovic, S. and Roscoe, S., Corrosion, 2000, vol. 56, pp. 684–693.

    CAS  Google Scholar 

  48. Boumhara, K., Tabyaoui, M., Jama, C., and Bentiss, F., J. Ind. Eng. Chem., 2015, vol. 29, pp. 146–155.

    CAS  Google Scholar 

  49. Shukla, S.K., Quraishi, M., and Ebenso, E.E., Int. J. Electrochem. Sci., 2011, vol. 6, pp. 2912–2931.

    CAS  Google Scholar 

  50. Khadom, A.A., Yaro, A.S., and Kadhum, A.A.H., J. Chil. Chem. Soc., 2010, vol. 55, pp. 150–152.

    CAS  Google Scholar 

  51. Donahue, F.M. and Nobe, K., J. Electrochem. Soc., 1965, vol. 112, pp. 886–891.

    CAS  Google Scholar 

  52. Abiola, O.K. and Tobun, Y., Chin. Chem. Lett., 2010, vol. 21, pp. 1449–1452.

    CAS  Google Scholar 

  53. Khadom, A., Surf. Eng. Appl. Electrochem., 2014, vol. 50, pp. 157–172.

    Google Scholar 

  54. Morad, M. and El-Dean, A.K., Corros. Sci., 2006, vol. 48, pp. 3398–3412.

    CAS  Google Scholar 

  55. Lebrini, M., Traisnel, M., Lagrenée, M., Mernari, B., and Bentiss, F., Corros. Sci., 2008, vol. 50, pp. 473–479.

    CAS  Google Scholar 

  56. Moretti, G., Guidi, F., and Grion, G., Corros. Sci., 2004, vol. 46, pp. 387–403.

    CAS  Google Scholar 

  57. Gomma, G.K. and Wahdan, M.H., Mater. Chem. Phys., 1994, vol. 39, pp. 142–148.

    CAS  Google Scholar 

  58. Larabi, L., Harek, Y., Benali, O., and Ghalem, S., Prog. Org. Coat., 2005, vol. 54, pp. 256–262.

    CAS  Google Scholar 

  59. Soltani, N., Tavakkoli, N., Kashani, M.K., Mosavizadeh, A., Oguzie, E., and Jalali, M., J. Ind. Eng. Chem., 2014, vol. 20, pp. 3217–3227.

    CAS  Google Scholar 

  60. Oguzie, E.E., Mater. Chem. Phys., 2006, vol. 99, pp. 441–446.

    CAS  Google Scholar 

  61. Saleh, M.M., Mater. Chem. Phys., 2006, vol. 98, pp. 83–89.

    CAS  Google Scholar 

  62. Krishnaveni, K. and Ravichandran, J., J. Electroanal. Chem., 2014, vol. 735, pp. 24–31.

    CAS  Google Scholar 

  63. Evgeny, B., Hughes, T., and Eskin, D., Corros. Sci., 2016, vol. 103, pp. 196–205.

    CAS  Google Scholar 

  64. Nasibi, M., Mohammady, M., Ashrafi, A., Khalaji, A.A.D., Moshrefifar, M., and Rafiee, E., J. Adhes. Sci. Technol., 2014, vol. 28, pp. 2001–2015.

    CAS  Google Scholar 

  65. Qu, Q., Jiang, S., Bai, W., and Li, L., Electrochim. Acta, 2007, vol. 52, pp. 6811–6820.

    CAS  Google Scholar 

  66. Ling, Y. Guan, Y., and Han, K., Corrosion, 1995, vol. 51, pp. 367–375.

    CAS  Google Scholar 

  67. Xue, G., Ding, J., and Cheng, P., Appl. Surf. Sci., 1995, vol. 89, pp. 77–82.

    CAS  Google Scholar 

  68. Nilsson, J.-O., Törnkvist, C., and Liedberg, B., Appl. Surf. Sci., 1989, vol. 37, pp. 306–326.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sabour Rouhaghdam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amini, M., Toorani, M. & Rouhaghdam, A.S. Corrosion of Copper in 0.1 M Hydrochloric Acid Solution with Benzotriazole as Corrosion Inhibitor. Prot Met Phys Chem Surf 56, 803–815 (2020). https://doi.org/10.1134/S2070205120040048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205120040048

Keywords:

Navigation