Skip to main content
Log in

The Synthesis of Polyaniline in Polyethylene Films with Grafted Sulfonated Polystyrene and Properties of These Films

  • NANOSCALE AND NANOSTRUCTURED MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The results of the creation of an electrically conductive layer of polyaniline (PANI) on the surface of a polyethylene (PE) film modified by postradiation chemical grafting polymerization of styrene followed by the sulfonation of the grafted polystyrene (PS) chains are presented in this work. The distribution of sulfonated PS through the thickness of the PE film when varying both the degree of grafting of PS and degree of sulfonation of the latter is studied. It is shown that two types of films can be obtained using the specified procedure, namely, surface and bulk sulfonated. The synthesis of PANI in the obtained films was conducted by the oxidative polymerization of aniline. It is shown that the synthesis of PANI in most composite films has an autocatalytic character similar to the synthesis in the medium of polymeric acids. The studies of these PANI-containing films by FTIR spectroscopy and atomic force microscopy and measurements of their surface conductivity show that only the layers formed on the bulk sulfonated films to the full extent possess the properties inherent to PANI. The minimum of the achieved values of sheet resistance (17 MΩ/sq) gives evidence of the possibilities of this method for the formation of film materials containing PANI in the surface layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Handbook of Conducting Polymers, Third Edition, Conjugated Polymers, Processing and Applications, Skotheim, T.A. and Reynolds, J.R., Eds., London, CRC Press, 2007.

  2. Gribkova, O.L., Nekrasov, A.A., Trchova, M., Ivanov, V.F., Sazikov, V.I., Razova, A.B., Tverskoy, V.A., and Vannikov, A.V., Polymer, 2011, vol. 52, pp. 2474–2484. https://doi.org/10.1016/j.polymer.2011.04.003

    Article  CAS  Google Scholar 

  3. Gribkova, O.L., Nekrasov, A.A., Ivanov, V.F., Vannikov, A.V., Razova, A.B., and Tverskoi, V.A., Prot. Met. Phys. Chem. Surf., 2010, vol. 46, pp. 540–545.

    Google Scholar 

  4. Guseva, M.A., Isakova, A.A., Gribkova, O.L., Tverskoy, V.A., Ivanov, V.F., Vannikov, A.V., and Fedotov, Yu.A., Polym. Sci., Ser. A, 2007, vol. 49, p. 4–11.

    Google Scholar 

  5. Li, N., Lee, J.Y., and Ong, L.H., J. Appl. Electrochem., 1992, vol. 22, no. 6, pp. 512–516.

    CAS  Google Scholar 

  6. Sapurina, I.Yu., Kompan, M.E., Malyshkin, V.V., Rozanov, V.V., and Stejskal, J., Russ. J. Electrochem., 2009, vol. 45, no. 6, pp. 697–706. https://doi.org/10.1134/S1023193509060135

    Article  CAS  Google Scholar 

  7. Berezina, N.P., Shkirskaya, S.A., Kolechko, M.V., Popova, O.V., Senchikhin, I.N., and Roldugin, V.I., Russ. J. Electrochem., 2011, vol. 47, no. 9, pp. 995–1005.

    CAS  Google Scholar 

  8. Berezina, N.P., Kononenko, N.A., Sytcheva, A.A.-R., Loza, N.V., Shkirskaya, S.A., Hegman, N., and Pungor, A., Electrochim. Acta, 2009, vol. 54, p. 2342.

    CAS  Google Scholar 

  9. Lysova, A.A., Stenina, I.A., Dolgopolov, S.V., Gorbunova, Yu.G., Kononenko, N.A., and Yaroslavtsev, A.B., Dokl. Phys. Chem., 2009, vol. 427, no. 2, pp. 142–145. https://doi.org/10.1134/S001250160908003X

    Article  CAS  Google Scholar 

  10. Elyashevich, G.K., Sidorovich, A.V., Smirnov, M.A., Kuryndin, I.S., Bobrova, N.V., Trchova, M., and Stejskal, J., Polym. Degrad. Stab., 2006, vol. 91, pp. 2786–2792.

    CAS  Google Scholar 

  11. Fazullin, D. D., Mavrin, G. V., Shaikhiev, I. G., Petr. Chem., 2017, vol. 57, no 2, pp. 165–171.

  12. Krul’, L.P. and Polikarpov, A.P., Usp. Khim.,1990, vol. 59, no. 5, pp. 807–826.

    Google Scholar 

  13. Jetsrisuparb, R., Balog, S., Bas, C., Parrin, L., et al., Eur. Polym. J., 2014, vol. 53, pp. 75–89.

    CAS  Google Scholar 

  14. Komacka, E.M., Przybytuluk, G., Fuks, L., Walo, M., and Lyczko, K., Radiat. Phys. Chem., 2014, vol. 94, pp. 115–118.

    Google Scholar 

  15. Sproll, V., Nagy, G., Gasser, U., Ebms, J.P., et al., Macromolecules, 2016, vol. 49, no. 11, pp. 4253–4264.

    CAS  Google Scholar 

  16. Zhilyaeva N.A., Mironova E.Yu, Ermilova M.M., Orekhova N.V., Bondarenko G.N., Dyakova M.G., Shevlyakova N.V., Tverskoy V.A., Yaroslavtsev A.B., Petr. Chem., 2016, vol. 56, no 11, pp. 1034-1041.

  17. Gibson, H.W. and Bailey, F.C., Macromolecules, 1980, vol. 13, no. 1, pp. 34–41.

    CAS  Google Scholar 

  18. Semenov, V.I., Shevlyakova, N.V., Shifrina, R.R., Aleksandrova, L.B., Tverskoi, V.A., and Pravednikov, A.N., Vysokomol.Soedin. Kratk. Soobshch., 1983, vol. 25, no. 8B, pp. 590–594.

    CAS  Google Scholar 

  19. Nekrasov, A.A., Ivanov, V.F., and Vannikov, A.V., J. Electroanal. Chem., 2000, vol. 482, no. 1, pp. 11–17. https://doi.org/10.1016/S0022-0728(00)00005-X

    Article  CAS  Google Scholar 

  20. Ding, Y., Liang, J., Liu, G., Ni, W., and Shen, L., Coatings, 2019, vol. 9, no. 6, p. 399. https://doi.org/10.3390/coatings9060399

    Article  CAS  Google Scholar 

  21. Trchova, M., Moravkova, Z., Blaha, M., and Stejskal, J., Electrochim. Acta, 2014, vol. 122, pp. 28–38.

    CAS  Google Scholar 

  22. Bhutto, A.A., Vesely, D., and Gabrys, B.J., Polymer, 2003, vol. 44, pp. 6627–6631. https://doi.org/10.1016/j.polymer.2003.08.005

    Article  CAS  Google Scholar 

  23. Kang, E.T., Neoh, K.G., and Tan, K.L., Prog. Polym. Sci., 1998, vol. 23, p. 277. https://doi.org/10.1016/S0079-6700(97)00030-0

    Article  CAS  Google Scholar 

  24. Boyer, M.-I., Quillard, S., Rebourt, E., Louarn, G., Buisson, J.P., Monkman, A., and Lefrant, S., J. Phys. Chem. B, 1998, vol. 102, no. 38, pp. 7382–7392.

    CAS  Google Scholar 

  25. Socrates, G., Infrared and Raman Characteristic Group Frequencies, New York: Wiley, 2001.

    Google Scholar 

  26. Bellamy, L.J., The Infra-Red Spectra of Complex Molecules, Bungay: Richard Clay, 1962.

  27. Vien, D.L., Colthup, N.B., Fateley, W.G., and Grasselli, J.G., The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, San Diego, CA: Academic Press, 1991.

    Google Scholar 

  28. Boyer, M.L., Quillard, S., Louarn, G., Froyer, G., and Lefrant, S.J., J. Phys. Chem. B, 2000, vol. 104, pp. 8952–8961.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The AFM measurements of the surface were performed on the equipment of the Center for Collective Use of Physical Methods of Investigation of the Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences. The authors are grateful to Yu.V. Kostina for measurements of the Fourier-transform IR spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Isakova.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isakova, A.A., Gribkova, O.L., Aliev, A.D. et al. The Synthesis of Polyaniline in Polyethylene Films with Grafted Sulfonated Polystyrene and Properties of These Films. Prot Met Phys Chem Surf 56, 725–733 (2020). https://doi.org/10.1134/S2070205120040127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205120040127

Navigation