Skip to main content
Log in

Influence of the Organic Moiety on the Tribological Properties of MoS2:Glycol Hybrid Nanoparticles-Based Dispersions

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

MoS2:glycol hybrid nanoparticles were synthetized through a polyol route. Their tribological properties when used as lubricant additives in a PAO 6 base oil were investigated using a pin-on-disk tribometer. An important friction reduction and good anti-wear performances were observed compared to the base oil and to the no modified particles. The MoS2:glycol nanoparticles were characterized by thermogravimetric analysis, transmission electron microscopy, RAMAN spectroscopy, X-ray diffraction, and Fourier transform infrared. Furthermore, the stability of the dispersion was followed by dynamic light scattering. On the other hand, Field Emission Scanning Electron Microscopy, Energy-Dispersive X-ray Spectroscopy, and X-ray Photoelectron Spectrometry analysis showed that the tribofilm formed on the wear surfaces during the friction test is at the origin of the excellent tribological performance of the MoS2 nanoparticles. In particular, it was demonstrated that the interaction of MoS2 with the organic moiety of the nanoparticles plays a key role in the friction reduction and the good anti-wear properties of the dispersions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yamamoto, Y., Gondo, S., Kamakura, T., Tanaka, N.: Frictional characteristics of molybdenum dithiophosphates. Wear 112, 79–87 (1986). https://doi.org/10.1016/0043-1648(86)90202-4

    Article  CAS  Google Scholar 

  2. Graham, J., Korcek, S., Spikes, H.A.: The friction-reducing properties of molybdenum diakyldithiocarbamate additives. Part 1. Factors influencing friction reduction. Tribol. Trans. 44, 626–636 (2001). https://doi.org/10.1080/10402000108982504

    Article  CAS  Google Scholar 

  3. Grossiord, C., Varlot, K., Martin, J.M., Le Mogne, T., Esnouf, C., Inoue, K.: MoS2 single sheet lubrication by molybdenum dithiocarbamate. Tribol. Int. 31, 737–743 (1998). https://doi.org/10.1016/S0301-679X(98)00094-2

    Article  CAS  Google Scholar 

  4. Spikes, H.: The history and mechanisms of ZDDP. Tribol. Lett. 17, 469–489 (2004). https://doi.org/10.1023/B:TRIL.0000044495.26882.b5

    Article  CAS  Google Scholar 

  5. Nicholls, M.A., Do, T., Norton, P.R., Kasrai, M., Bancroft, G.M.: Review of the lubrication of metallic surfaces by zinc dialkyl-dithiophosphates. Tribol. Int. 38, 15–39 (2005). https://doi.org/10.1016/j.triboint.2004.05.009

    Article  CAS  Google Scholar 

  6. Martin, J.M.: Antiwear mechanisms of zinc dithiophosphate: a chemical hardness approach. Tribol. Lett. 6, 1–8 (1999). https://doi.org/10.1023/A:1019191019134

    Article  CAS  Google Scholar 

  7. Spikes, H.: Friction Modifier additives. Tribol. Lett. 60, 5 (2015). https://doi.org/10.1007/s11249-015-0589-z

    Article  Google Scholar 

  8. Dai, W., Kheireddin, B., Gao, H., Liang, H.: Roles of nanoparticles in oil lubrication. Tribol. Int. 102, 88–98 (2016). https://doi.org/10.1016/j.triboint.2016.05.020

    Article  CAS  Google Scholar 

  9. Dassenoy, F.: Nanoparticles as additives for the development of high performance and environmentally friendly engine lubricants. Tribol. Online 14, 237–253 (2019). https://doi.org/10.2474/trol.14.237

    Article  Google Scholar 

  10. Tenne, R., Margulis, L., Genut, M., Hodes, G.: Polyhedral and cylindrical structures of tungsten disulphide. Nature 360, 444–446 (1992). https://doi.org/10.1038/360444a0

    Article  CAS  Google Scholar 

  11. Cizaire, L., Vacher, B., Le Mogne, T., Martin, J.M., Rapoport, L., Margolin, A., Tenne, R.: Mechanisms of ultra-low friction by hollow inorganic fullerene-like MoS2 nanoparticles. Surf. Coat. Technol. 160, 282–287 (2002). https://doi.org/10.1016/S0257-8972(02)00420-6

    Article  CAS  Google Scholar 

  12. Joly-Pottuz, L., Dassenoy, F., Belin, M., Vacher, B., Martin, J.M., Fleischer, N.: Ultra-low friction and wear properties of IF-WS2 under boundary lubrication. Tribol. Lett. 18, 477–485 (2005). https://doi.org/10.1007/s11249-005-3607-8

    Article  CAS  Google Scholar 

  13. Rosentsveig, R., Gorodnev, A., Feuerstein, N., Friedman, H., Zak, A., Fleischer, N., Tannous, J., Dassenoy, F., Tenne, R.: Fullerene-like MoS2 nanoparticles and their tribological behavior. Tribol. Lett. 36, 175–182 (2009). https://doi.org/10.1007/s11249-009-9472-0

    Article  CAS  Google Scholar 

  14. Tannous, J., Dassenoy, F., Bruhacs, A., Tremel, W.: Synthesis and tribological performance of novel MoxW1-xS2 (0<x<1) inorganic fullerenes. Tribol. Lett. 37, 83–92 (2010). https://doi.org/10.1007/s11249-009-9493-8

    Article  CAS  Google Scholar 

  15. Njiwa, P., Hadj-Aïssa, A., Afanasiev, P., Geantet, C., Bosselet, F., Vacher, B., Belin, M., Le Mogne, T., Dassenoy, F.: Tribological properties of new MoS2 nanoparticles prepared by seed-assisted solution technique. Tribol. Lett. 55, 473–481 (2014). https://doi.org/10.1007/s11249-014-0380-6

    Article  CAS  Google Scholar 

  16. Wu, H., Qin, L., Dong, G., Hua, M., Yang, S., Zhang, J.: An investigation on the lubrication mechanism of MoS2 nano sheet in point contact: the manner of particle entering the contact area. Tribol. Int. 107, 48–55 (2017). https://doi.org/10.1016/j.triboint.2016.11.009

    Article  CAS  Google Scholar 

  17. Joly-Pottuz, L., Martin, J.M., Belin, M., Dassenoy, F., Montagnac, G., Reynard, B.: Study of inorganic fullerenes ad carbon nanotubes by in situ Raman tribometry. Appl. Phys. Lett. 91, 153107 (2007). https://doi.org/10.1063/1.2790077

    Article  CAS  Google Scholar 

  18. Joly-Pottuz, L., Martin, J.M., Dassenoy, F., Belin, M., Montagnac, G., Reynard, B., Fleischer, N.: Pressure-induced exfoliation of inorganic fullerene-like WS2 particles in a Hertzian contact. J. Appl. Phys. 99, 023524 (2006). https://doi.org/10.1063/1.2165404

    Article  CAS  Google Scholar 

  19. Lahouij, I., Dassenoy, F., Vacher, B., Martin, J.M.: Real time TEM imaging of compression and shear of single fullerene-like MoS2 nanoparticle. Tribol. Lett. 45, 131–141 (2012). https://doi.org/10.1007/s11249-011-9873-8

    Article  CAS  Google Scholar 

  20. Lahouij, I., Vacher, B., Dassenoy, F.: Direct observation by in situ transmission electron microscopy of the behavior of IF-MoS2 nanoparticles during sliding tests: influence of the crystal structure. Lubr. Sci. 26, 163–173 (2014). https://doi.org/10.1002/ls.1241

    Article  CAS  Google Scholar 

  21. Lahouij, I., Vacher, B., Martin, J.M., Dassenoy, F.: IF-MoS2 based lubricants: influence of size, shape and crystal structure. Wear 296, 558–567 (2012). https://doi.org/10.1016/j.wear.2012.07.016

    Article  CAS  Google Scholar 

  22. Rabaso, P., Ville, F., Dassenoy, F., Diaby, M., Afanasiev, P., Cavoret, J., Vacher, B., Le Mogne, T.: Boundary lubrication: influence of the size and structure of inorganic fullerene-like MoS2 nanoparticles on friction and wear reduction. Wear 320, 161–178 (2014). https://doi.org/10.1016/j.wear.2014.09.001

    Article  CAS  Google Scholar 

  23. Moshkovith, A., Perfiliev, V., Verdyan, A., Lapsker, I., Popovitz-Biro, R., Tenne, R., Rapoport, L.: Sedimentation of IF-WS2 aggregates and a reproducibility of the tribological data. Tribol. Int. 40, 117–124 (2007). https://doi.org/10.1016/j.triboint.2006.02.067

    Article  CAS  Google Scholar 

  24. Rapoport, L., Moshkovich, A., Perfilyev, V., Laikhtman, A., Lapsker, I., Yadgarov, L., Rosentsveig, R., Tenne, R.: High lubricity of re-doped fullerene-like MoS2 nanoparticles. Tribol. Lett. 45, 257–264 (2012). https://doi.org/10.1007/s11249-011-9881-8

    Article  CAS  Google Scholar 

  25. Yadgarov, L., Petrone, V., Rosentsveig, R., Feldman, Y., Renne, R., Senatore, A.: Tribological studied of rhenium doped fullerene-like MoS2 nanoparticles. Wear 297, 1103–1110 (2013). https://doi.org/10.1016/j.wear.2012.11.084

    Article  CAS  Google Scholar 

  26. Sahoo, R.R., Biswas, S.K.: Deformation and friction of MoS2 particles in liquid suspensions used to lubricate sliding contact. Thin Solid Films 518, 5595–6005 (2010). https://doi.org/10.1016/j.tsf.2010.05.127

    Article  CAS  Google Scholar 

  27. Rabaso, P., Dassenoy, F., Ville, F., Diaby, M., Vacher, B., Le Mogne, T., Martin, J.M., Cavoret, J.: An investigation on the reduced ability of IF-MoS2 nanoparticles to reduce friction and wear in the presence of dispersants. Tribol. Lett. 55, 503–516 (2014). https://doi.org/10.1007/s11249-014-0381-5

    Article  CAS  Google Scholar 

  28. Aralihalli, S., Biswas, S.: Grafting of dispersants on MoS2 nanoparticles in base oil lubricating of steel. Tribol. Lett. 49, 61–76 (2013). https://doi.org/10.1007/s11249-012-0042-5

    Article  CAS  Google Scholar 

  29. Sgroi, M.F., Asti, M., Gili, F., Deorsola, F.A., Bensaid, S., Fino, D., Kraft, G., Garcia, I., Dassenoy, F.: Engine bench and road testing of an engine oil containing MoS2 particles as nano-additive for friction reduction. Tribol. Int. 105, 317–325 (2017). https://doi.org/10.1016/j.triboint.2016.10.013

    Article  CAS  Google Scholar 

  30. Sgroi, M., Gili, F., Mangherini, D., Lahouij, I., Dassenoy, F., Garcia, I., Odriozola, I., Kraft, G.: Friction reduction benefits in valve-train system using IF-MoS2 added engine oil. Tribol. Trans. 58, 207–214 (2015). https://doi.org/10.1080/10402004.2014.960540

    Article  CAS  Google Scholar 

  31. Chianelli, R.R., Dines, M.B.: Low-temperature solution preparation of group 4B, 5B, and 6B transition-metal dichalcogenides. Inorg. Chem. 17, 2758–2762 (1978). https://doi.org/10.1021/ic50188a014

    Article  CAS  Google Scholar 

  32. Wildervanck, J.C., Jellinek, F.: Preparation and crystallinity of molybdenum and tungsten sulfides. ZAAC 238, 309–318 (1964). https://doi.org/10.1002/zaac.19643280514

    Article  Google Scholar 

  33. Duphil, D., Bastide, S., Lévy-Clément, C.: Chemical synthesis of molybdenum disulfidenanoparticles in an organic solution. J. Mater. Chem. 12, 2430–2432 (2002). https://doi.org/10.1039/B202162E

    Article  CAS  Google Scholar 

  34. Altavilla, C., Sarno, M., Ciambelli, P.: A novel wet chemistry approach for the synthesis of hybrid 2d free-floating single or multilayer nanosheets of MS2@oleylamine (M=Mo, W). Chem. Mater. 23(17), 3879–3885 (2011). https://doi.org/10.1021/cm200837g

    Article  CAS  Google Scholar 

  35. DeFeo, M., Minfray, C., DeBarros, M., Thiebaut, B., LeMogne, T., Vacher, B., Martin, J.M.: Ageing impact on tribological properties of MoDTC-containing base oil. Tribol. Int. 92, 126–135 (2015). https://doi.org/10.1016/j.triboint.2015.04.014

    Article  CAS  Google Scholar 

  36. Benoist, L., Gonbeaua, D., Pfister-Guillouzo, G., Schmidt, E., Meunier, G., Levasseur, A.: X-ray photoelectron spectroscopy characterization of amorphous molybdenum oxysulfide thin films. Thin Solid Films 258, 110–114 (1995). https://doi.org/10.1016/0040-6090(94)06383-4

    Article  CAS  Google Scholar 

  37. Deshpande, P., Minfray, C., Dassenoy, F., Thiebaut, B., Le Mogne, Th, Vacher, B., Jarnias, F.: Tribological behaviour of TiO2 Atmospheric Plasma Spray (APS) coating under mixed and boundary lubrication conditions in presence of oil containing MoDTC. Tribol. Int. 118, 273–286 (2018). https://doi.org/10.1016/j.triboint.2017.10.003

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. García.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 408 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García, I., Galipaud, J., Kosta, I. et al. Influence of the Organic Moiety on the Tribological Properties of MoS2:Glycol Hybrid Nanoparticles-Based Dispersions. Tribol Lett 68, 104 (2020). https://doi.org/10.1007/s11249-020-01345-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-020-01345-2

Keywords

Navigation