Skip to main content

Advertisement

Log in

Controllable double tunneling induced optical soliton storage in linear triple quantum dot molecules

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We propose an asymmetric linear triple quantum dot molecule model for a recent experimental device with a double neighboring dot-dot tunneling coupling, of which the linear and nonlinear dynamical properties are analytically studied by using an amplitude variable approach combined with multi-scale method. It is shown that double transparency windows are formed by the double tunneling coupling. Both dark and bright optical solitons are then obtained, of which both the types and the propagating velocity can be controlled by the two tunneling coupling strengths. Interestingly, the propagating velocity of the solitons can approach to zero at certain tunneling coupling strengths, the motionless optical solitons appearing there. The results indicate potential applications of the semiconductor quantum devices for optical soliton storage.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H.A. Haus, W.S. Wong, Rev. Mod. Phys. 68, 423 (1996)

    Article  ADS  Google Scholar 

  2. A. Hasegawa, M. Matsumoto, Optical Solitons in Fibers (Springer, Berlin, 2003)

  3. M. Fleischhauer, A. Imamoglu, J.P. Marangos, Rev. Mod. Phys. 77, 633 (2005)

    Article  ADS  Google Scholar 

  4. M. Fleischhauer, M.D. Lukin, Phys. Rev. Lett. 84, 5094 (2000)

    Article  ADS  Google Scholar 

  5. G. Huang, C. Hang, L. Deng, Eur. Phys. J. D 40, 437 (2006)

    Article  ADS  Google Scholar 

  6. H. Tang, D.L. Wang, Y.C. She, J.W. Ding, S.G. Xiao, Eur. Phys. J. D 70, 22 (2016)

    Article  ADS  Google Scholar 

  7. Y.C. She, D.L. Wang, W.X. Zhang, Z.Q. Zhang, J.W. Ding, Eur. Phys. J. D 61, 181 (2011)

    Article  ADS  Google Scholar 

  8. X.J. Liu, H. Jing, M.L. Ge, Eur. Phys. J. D 40, 297 (2006)

    Article  ADS  Google Scholar 

  9. C. Simon, M. Afzelius, J. Appe, A.B. Giroday, S.J. Dewhurst, N. Gisin, C. Hu, F. Jelezko, S. Kröll, J. Müler, J. Nunn, E. Polzik, J. Rarity, H. Riedmatten, W. Rosenfeld, A.J. Shields, N. Sköld, R.M. Stevenson, R. Thew, I. Walmsley, M. Weber, H. Weinfurter, J. Wrachtrup, R.J. Young, Eur. Phys. J. D 58, 1 (2010)

    Article  ADS  Google Scholar 

  10. C. Liu, Z. Dutton, C.H. Behroozi, L.V. Hau, Nature 409, 490 (2001)

    Article  ADS  Google Scholar 

  11. D.F. Phillips, A. Fleischhauer, A. Mair, R.L. Walsworth, Phys. Rev. Lett. 86, 783 (2001)

    Article  ADS  Google Scholar 

  12. D.T. Xu, C. Hang, G.X. Huang, Phys. Rev. A 98, 043848 (2018)

    Article  ADS  Google Scholar 

  13. Y. Chen, Z.Y. Bai, G.X. Huang, Phys. Rev. A 89, 023835 (2014)

    Article  ADS  Google Scholar 

  14. Y. Chen, Z.M. Chen, G.X. Huang, Phys. Rev. A 91, 023820 (2015)

    Article  ADS  Google Scholar 

  15. D.T. Xu, Z.M. Chen, G.X. Huang, Opt. Express 25, 19094 (2017)

    Article  ADS  Google Scholar 

  16. P. Lodahl, S. Mahmoodian, S. Stobbe, Rev. Mod. Phys. 87, 347 (2015)

    Article  ADS  Google Scholar 

  17. J. Kim, S.I. Chuang, P.C. Ku, C.J.C. Hasnain, J. Phys.: Condens. Matter 16, S3727 (2004)

    Google Scholar 

  18. C. Bardot, M. Schwab, M. Bayer, Phys. Rev. B 72, 035314 (2005)

    Article  ADS  Google Scholar 

  19. P.C. Ku, C.J. Hasnain, S.L. Chuang, Electron Lett. 38, 1581 (2002)

    Article  ADS  Google Scholar 

  20. P.C. Peng, H.C. Kuo, W.K. Tsai, Y.H. Chang, C.T. Lin, S. Chi, S.C. Wang, G. Lin, H.P. Yang, K.F. Lin, H.C. Yu, J.Y. Chi, Opt. Express 14, 2944 (2006)

    Article  ADS  Google Scholar 

  21. D. Barettin, J. Houmark, B. Lassen, M. Willatzen, T.R. Nielsen, J. Mørk, A.P. Jauho, Phys. Rev. B 80, 235304 (2009)

    Article  ADS  Google Scholar 

  22. D. Mogilevtsev, E.R. Gómez, S.B. Cavalcanti, L.E. Oliveira, Phys. Rev. B 92, 235446 (2015)

    Article  ADS  Google Scholar 

  23. X. Xu, B. Sun, P.R. Berman, D.G. Steel, A.S. Bracker, D. Gammon, L.J. Sham, Science 317, 929 (2007)

    Article  ADS  Google Scholar 

  24. W.B. Gao, P. Fallahi, E. Togan, A. Delteil, Y.S. Chin, J.M. Sanchez, A. Imamoglu, Nat. Commun. 4, 2744 (2013)

    Article  ADS  Google Scholar 

  25. G.K. De, D. Press, P.L. McMahon, Y. Yamamoto, Rep. Prog. Phys. 76, 092501 (2013)

    Article  ADS  Google Scholar 

  26. W.X. Yang, A.X. Chen, R.K. Lee, Y. Wu, Phys. Rev. A 84, 013835 (2011)

    Article  ADS  Google Scholar 

  27. P.L. Ardelt, M. Koller, T. Simmet, L. Hanschke, A. Bechtold, A. Regler, J. Wierzbowski, H. Riedl, J.J. Finley, K. Müller, Phys. Rev. B 93, 165305 (2016)

    Article  ADS  Google Scholar 

  28. H. Gotoh, H. Kamada, T. Saitoh, H. Ando, J. Temmyo, Phys. Rev. B 71, 195334 (2005)

    Article  ADS  Google Scholar 

  29. S. Marcinkevicius, A. Gushterov, J.P. Reithmaier, Appl. Phys. Lett. 92, 041113 (2008)

    Article  ADS  Google Scholar 

  30. W.G.V. Wiel, S.D. Franceschi, J.M. Elzerman, T. Fujisawa, S. Tarucha, L.P. Kouwenhoven, Rev. Mod. Phys. 75, 1 (2002)

    Article  ADS  Google Scholar 

  31. D. Kim, S.G. Carter, A. Greilich, A.S. Bracker, D. Gammon, Nat. Phys. 7, 223 (2011)

    Article  Google Scholar 

  32. H.S. Borges, L. Sanz, J.M.V. Bôas, O.O.D. Neto, A.M. Alcalde, Phys. Rev. B 85, 115425 (2012)

    Article  ADS  Google Scholar 

  33. J.M.V. Bôas, A.O. Govorov, S.E. Ulloa, Phys. Rev. B 69, 125342 (2004)

    Article  ADS  Google Scholar 

  34. K. Müller, A. Bechtold, C. Ruppert, M. Zecherle, G. Reithmaier, M. Bichler, H.J. Krenner, G. Abstreiter, A.W. Holleitner, J.M.V. Bôas, M. Betz, J.J. Finley, Phys. Rev. Lett. 108, 197402 (2012)

    Article  ADS  Google Scholar 

  35. K.M. Weiss, J.M. Elzerman, Y.L. Delley, J.M. Sanchez, A. Imamoğlu, Phys. Rev. Lett. 109, 107401 (2012)

    Article  ADS  Google Scholar 

  36. K.H. Zeng, D.L. Wang, Y.C. She, X.Q. Luo, Eur. Phys. J. D 67, 221 (2013)

    Article  ADS  Google Scholar 

  37. M.T. Cheng, X.S. Ma, Y.Q. Luo, P.Z. Wang, G.X. Zhao, Appl. Phys. Lett. 99, 223509 (2011)

    Article  ADS  Google Scholar 

  38. S.C. Tian, C.Z. Tong, C.L. Wang, L.J. Wang, H. Wu, E.B. Xing, Y.Q. Ning, L.J. Wang, Opt. Commun. 312, 296 (2014)

    Article  ADS  Google Scholar 

  39. E. Voutsinas, A.F. Terzis, E. Paspalakis, Phys. Lett. A 378, 219 (2014)

    Article  ADS  Google Scholar 

  40. Y.D. Peng, A.H. Yang, D.H. Li, H. Zhang, Y.P. Niu, S.Q. Gong, Laser Phys. Lett. 11, 065201 (2014)

    Article  ADS  Google Scholar 

  41. S. Michael, W.W. Chow, H.C. Schneider, Phys. Rev. B 88, 125305 (2013)

    Article  ADS  Google Scholar 

  42. C.H. Yuan, K.D. Zhu, Y.W. Jiang, J. Appl. Phys. 102, 023109 (2007)

    Article  ADS  Google Scholar 

  43. Y.C. She, X.J. Zheng, D.L. Wang, W.X. Zhang, Opt. Express 21, 17392 (2013)

    Article  ADS  Google Scholar 

  44. M. Eslami, M. Khanmohammadi, R. Kheradmand, G.L. Oppo, Phys. Rev. A 96, 033836 (2017)

    Article  ADS  Google Scholar 

  45. J.Y. Wang, S.Y. Huang, G.Y. Huang, D. Pan, J.H. Zhao, H.Q. Xu, Nano Lett. 17, 4158 (2017)

    Article  ADS  Google Scholar 

  46. C.Y. Hsieh, Y.P. Shim, M. Korkusinski, P. Hawrylak, Rep. Prog. Phys. 75, 114501 (2012)

    Article  Google Scholar 

  47. L. Gaudreau, S.A. Studenikin, A.S. Sachrajda, P. Zawadzki, A. Kam, J. Lapointe, M. Korkusinski, P. Hawrylak, Phys. Rev. Lett. 97, 036807 (2006)

    Article  ADS  Google Scholar 

  48. M.C. Rogge, R.J. Haug, New J. Phys. 11, 113037 (2009)

    Article  ADS  Google Scholar 

  49. K.G. Rasmussen, H.I. Jørgensen, T. Hayashi, P.E. Lindelof, T. Fujisawa, Nano Lett. 8, 1055 (2008)

    Article  ADS  Google Scholar 

  50. T. Takakura, M.P. Ladrière, T. Obata, Y.S. Shin, R. Brunner, K. Yoshida, T. Taniyama, S. Tarucha, Appl. Phys. Lett. 97, 212104 (2010)

    Article  ADS  Google Scholar 

  51. F.R. Braakman, P. Barthelemy, C. Reichl, W. Wegscheider, L.M.K. Vandersypen, Nanotechnology 8, 432 (2013)

    Google Scholar 

  52. E.A. Laird, J.M. Taylor, D.P. DiVincenzo, C.M. Marcus, M.P. Hanson, A.C. Gossard, Phys. Rev. B 82, 075403 (2010)

    Article  ADS  Google Scholar 

  53. L. Gaudreau, G. Granger, A. Kam, G.C. Aers, S.A. Studenikin, P. Zawadzki, M.P. Ladrière, Z.R. Wasilewski, A.S. Sachrajda, Nat. Phys. 8, 54 (2011)

    Article  Google Scholar 

  54. R. Songmuang, S. Kiravittaya, O.G. Schmidt, Appl. Phys. Lett. 82, 2892 (2003)

    Article  ADS  Google Scholar 

  55. S.C. Tian, R.G. Wan, C.Z. Tong, Y.Q. Ning, L. Qin, Y. Liu, J. Opt. Soc. Am. B 31, 1436 (2014)

    Article  ADS  Google Scholar 

  56. A.B. Giroday, N. Sköld, R.M. Stevenson, I. Farrer, D.A. Ritchie, A.J. Shields, Phys. Rev. Lett. 106, 216802 (2011)

    Article  ADS  Google Scholar 

  57. I. Novikova, N.B. Phillips, A.V. Gorshkov, Phys. Rev. A 78, 021802(R) (2008)

    Article  ADS  Google Scholar 

  58. G.J. Beirne, C. Hermannstädter, L. Wang, A. Rastelli, O.G. Schmidt, P. Michler, Phys. Rev. Lett. 96, 137401 (2006)

    Article  ADS  Google Scholar 

  59. A.S. Bracker, M. Scheibner, M.F. Doty, E.A. Stinaff, I.V. Ponomarev, J.C. Kim, L.J. Whitman, T.L. Reinecke, D. Gammon, Appl. Phys. Lett. 89, 233110 (2006)

    Article  ADS  Google Scholar 

  60. X.Q. Luo, Z.Z. Li, T.F. Li, W. Xiong, J.Q. You, Opt. Express 26, 32585 (2018)

    Article  ADS  Google Scholar 

  61. B. Luo, C. Hang, H.J. Li, G.X. Huang, Chin. Phys. B 19, 054214 (2010)

    Article  ADS  Google Scholar 

  62. S.E. Harris, Phys. Today 50, 36 (1997)

    Article  Google Scholar 

  63. L. Li, G.X. Huang, Eur. Phys. J. D 58, 339 (2010)

    Article  ADS  Google Scholar 

  64. J.Y. Liu, C. Hang, G.X. Huang, Phys. Rev. A 93, 063836 (2016)

    Article  ADS  Google Scholar 

  65. X.Q. Luo, D.L. Wang, Z.Q. Zhang, J.W. Ding, W.M. Liu, Phys. Rev. A 84, 033803 (2011)

    Article  ADS  Google Scholar 

  66. G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, New York, 2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianwen Ding or Denglong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Ding, J. & Wang, D. Controllable double tunneling induced optical soliton storage in linear triple quantum dot molecules. Eur. Phys. J. D 74, 190 (2020). https://doi.org/10.1140/epjd/e2020-100537-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-100537-x

Keywords

Navigation