Skip to main content
Log in

Balanced Frames: A Useful Tool in Signal Processing with Good Properties

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

So far there has not been paid attention to frames that are balanced, i.e. those frames which sum is zero. In this paper we consider balanced frames, and in particular balanced unit norm tight frames, in finite dimensional Hilbert spaces. Here we discover various advantages of balanced unit norm tight frames in signal processing. They give an exact reconstruction in the presence of systematic errors in the transmitted coefficients, and are optimal when these coefficients are corrupted with noises that can have non-zero mean. Moreover, using balanced frames we can know that the transmitted coefficients were perturbed, and we also have an indication of the source of the error. We analyze several properties of these types of frames. We define an equivalence relation in the set of the dual frames of a balanced frame, and use it to show that we can obtain all the duals from the balanced ones. We study the problem of finding the nearest balanced frame to a given frame, characterizing completely its existence and giving its expression. We introduce and study a concept of complement for balanced frames. Finally, we present many examples and methods for constructing balanced unit norm tight frames.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alexeev, B., Cahill, J., Mixon, D.G.: Full spark frames. J. Fourier Anal. Appl. 18, 1167–1194 (2012)

    Article  MathSciNet  Google Scholar 

  2. Bajnok, B.: Construction of designs on the 2-sphere. Eur. J. Combin. 12, 377–382 (1991)

    Article  MathSciNet  Google Scholar 

  3. Bannai, E., Bannai, E.: A survey on spherical designs and algebraic combinatorics on spheres. Eur. J. Combin. 30(6), 1392–1425 (2009)

    Article  MathSciNet  Google Scholar 

  4. Barg, A., Glazyrin, A., Okoudjou, K., Yu, W.-H.: Finite two-distance tight frames. Linear Algebra Appl. 475, 163–175 (2015)

    Article  MathSciNet  Google Scholar 

  5. Benedetto, J.J., Fickus, M.: Finite normalized tight frames. Adv. Comput. Math. 18(2–4), 357–385 (2003)

    Article  MathSciNet  Google Scholar 

  6. Benedetto, J., Yilmaz, Ö., Powell, A.: Sigma-delta quantization and finite frames. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 3, , pp. 937–940. ICASSP’04, IEEE, Philadelphia, PA (2004)

  7. Bodmann, B.G., Paulsen, V.I.: Frame paths and error bounds for sigma-delta quantization. Appl. Comput. Harm. Anal. 22, 176–197 (2007)

    Article  MathSciNet  Google Scholar 

  8. Bodmann, B.G., Paulsen, V.I.: Optimal frames for erasures. Linear Algebra Appl. 377, 31–51 (2004)

    Article  MathSciNet  Google Scholar 

  9. Cahill, J.: Flags, frames, and Bergman spaces. M.S. Thesis, San Francisco State University (2010)

  10. Casazza, P.G., Kovačević, J.: Equal norm tight frames with erasures. Adv. Comput. Math. 18(2–4), 387–430 (2003)

    Article  MathSciNet  Google Scholar 

  11. Casazza, P.G., Kutyniok, G. (eds.): Finite Frames. Theory and Applications. Birkhäuser, Boston (2012)

    Google Scholar 

  12. Christensen, O.: An Introduction to Frames and Riesz Bases, 2nd edn. Birkhäuser, Boston (2016)

    MATH  Google Scholar 

  13. Copenhaver, M.S., Kim, Y.H., Logan, C., Mayfield, K., Narayan, S.K., Petro, M.J., Sheperd, J.: Diagram vectors and tight frame scaling in finite dimensions. Oper. Matrices 8(1), 73–88 (2014)

    Article  MathSciNet  Google Scholar 

  14. Cox, I.J., Kilian, J., Leighton, T., Shamoon, T.: Secure spread spectrum watermarking for multimedia. IEEE Trans. Image Process. 6(12), 1837–1867 (1997)

    Article  Google Scholar 

  15. Coxeter, H.S.M.: Regular Polytopes, 3rd edn. Dover Publications Inc., New York (1973)

    MATH  Google Scholar 

  16. Goyal, V.K., Kovačević, J., Kelner, J.A.: Quantized frame expansions with erasures. Appl. Comput. Harm. Anal. 10, 203–233 (2001)

    Article  MathSciNet  Google Scholar 

  17. Jimenez, D., Wang, L., Wang, Y.: White noise hypothesis for uniform quantization errors. SIAM J. Math. Anal. 38, 2042–2056 (2007)

    Article  MathSciNet  Google Scholar 

  18. Fickus, M., Mixon, D.G., Tremain, J.C.: Steiner equiangular tight frames. Linear Algebra Appl. 436, 1014–1027 (2012)

    Article  MathSciNet  Google Scholar 

  19. Han, D., Kornelson, K., Larson, D., Weber, E.: Frames for Under-Graduates. Student Mathematical Library, vol. 40. American Mathematical Society, Providence (2007)

    Google Scholar 

  20. Hong, Y.: On spherical \(t\)-designs in \({\mathbb{R}}^{2}\). Eur. J. Comb. 3, 255–258 (1982)

    Article  Google Scholar 

  21. Horadam, K.J.: Hadamard Matrices and Their Applications. Princeton University Press, New York (2007)

    Book  Google Scholar 

  22. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, New York (2013)

    MATH  Google Scholar 

  23. Kang, X., Huang, J., Zeng, W.: Improving robustness of quantization-based image watermarking via adaptive receiver. IEEE Trans. Multimedia 10(6), 953–959 (2008)

    Article  Google Scholar 

  24. Kovačević, J., Chebira, A.: An introduction to frames. Found. Trends Signal Process. 2, 1–94 (2008)

    Article  Google Scholar 

  25. Lu, C.S., Sun, S.W., Hsu, C.Y., Chang, P.C.: Media hash-dependent image watermarking resilient against both geometric attacks and estimate attacks based on false positive-oriented detection. IEEE Trans. Multimedia 8(4), 668–685 (2006)

    Article  Google Scholar 

  26. Mimura, Y.: A construction of spherical 2-designs. Graphs Combin. 6(4), 369–372 (1990)

    Article  MathSciNet  Google Scholar 

  27. Moulin, P., Koetter, R.: Data hiding codes. Proceedings of the IEEE 93(12), 2083–2126 (2005)

    Article  Google Scholar 

  28. Murdoch, T.A.: Isogonal configurations. Am. Math. Mon. 100(4), 381–384 (1993)

    Article  MathSciNet  Google Scholar 

  29. Okoudjou, K. (ed.): Finite Frame Theory. A Complete Introduction to Overcompletness. In: Proceedings of Symposia in Applied Mathematics, AMS, vol. 23 (2016)

  30. Püschel, M., Kovačević, J.: Real, tight frames with maximal robustness to erasures. In: Proceedings of the Data Compression Conference Snowbird UT, pp. 63–72 (2005)

  31. Safapour, A., Shafiee, M.: Constructing finite frames via platonic solids. Iran. J. Math. Sci. Inform. 7(1), 35–42 (2012)

    MathSciNet  MATH  Google Scholar 

  32. Strohmer, T., Heath Jr., R.W.: Grassmannian frames with applications to coding and communication. Appl. Comput. Harm. Anal. 14(3), 257–275 (2003)

    Article  MathSciNet  Google Scholar 

  33. Sustik, M.A., Tropp, J.A., Dhillon, I.S., Heath Jr., R.W.: On the existence of equiangular tight frames. Linear Algebra Appl. 426, 619–635 (2007)

    Article  MathSciNet  Google Scholar 

  34. Waldron, S.: An Introduction to Finite Tight Frames. Birkhäuser, Boston (2018)

    Book  Google Scholar 

Download references

Acknowledgements

This research has been supported by Grants PIP 112-201501-00589-CO (CONICET), PROICO 03-1618 (UNSL), PICT-2014-1480 and UBACyT 20020130100422BA. We thank the anonymous referee for valuable comments that helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia M. Morillas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heineken, S.B., Morillas, P.M. & Tarazaga, P. Balanced Frames: A Useful Tool in Signal Processing with Good Properties. Results Math 75, 152 (2020). https://doi.org/10.1007/s00025-020-01280-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-020-01280-7

Keywords

Mathematics Subject Classification

Navigation