Skip to main content

Advertisement

Log in

Analysis of miRNA Expression in the Ileum of Broiler Chickens During Bacillus licheniformis H2 Supplementation Against Subclinical Necrotic Enteritis

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Subclinical necrotic enteritis (SNE) is one of the serious threats to the poultry industry. Probiotics have been proven to exert beneficial effects in controlling SNE. However, their exact mechanisms have not been fully elucidated. Moreover, few studies have focused on their impact on microRNAs (miRNAs). Therefore, the present study aimed to explore the miRNA expression profiles in the ileum of broiler chickens during probiotic supplementation for controlling SNE. A total of 180 newly hatched male broilers were randomly allocated into three groups, including a negative control group, an SNE infection group, and a Bacillus licheniformis H2 pretreatment group. Illumina high-throughput sequencing was conducted to identify the miRNA expression of the three groups. Results showed that 628 miRNAs, including 582 known miRNAs and 46 novel miRNAs, were detected in the miRNA libraries. The target genes of 57 significantly differentially expressed miRNAs were predicted and annotated. Moreover, they were found to be partly enriched in pathways related to immunity and inflammation such as tumor necrosis factor receptor binding, immune response-regulating signaling pathway, Toll-like receptor 2 signaling pathway, interleukin-15 production, activation of NF-κB-inducing kinase activity, and MAP kinase tyrosine/serine/threonine phosphatase activity. Some of the target genes of 57 miRNAs were related to the MAPK signaling pathway. Furthermore, the expression of several miRNAs, which may be involved in the MAPK signaling pathway, was significantly affected by SNE induction and showed no significant difference in the presence of H2. All these findings provide comprehensive miRNA expression profiles of three different treatment groups. They further suggest that H2 could exert beneficial effects in controlling SNE through immune and inflammatory response associated with altered miRNA expression, such as the MAPK signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All the raw sequencing data used in this work were uploaded to the GEO database (accession number: GSE151627).

References

  1. Zahoor I, Ghayas A, Basheer A (2018) Genetics and genomics of susceptibility and immune response to necrotic enteritis in chicken: a review. Mol Biol Rep 45(1):31–37. https://doi.org/10.1007/s11033-017-4138-8

    Article  CAS  PubMed  Google Scholar 

  2. Shojadoost B, Vince AR, Prescott JF (2012) The successful experimental induction of necrotic enteritis in chickens by Clostridium perfringens: a critical review. Vet Res 43:74. https://doi.org/10.1186/1297-9716-43-74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Johansson A, Aspán A, Kaldhusdal M, Engström BE (2010) Genetic diversity and prevalence of netB in Clostridium perfringens isolated from a broiler flock affected by mild necrotic enteritis. Vet Microbiol 144(1–2):87–92. https://doi.org/10.1016/j.vetmic.2009.12.017

    Article  PubMed  Google Scholar 

  4. Huang T, Peng XY, Gao B, Wei QL, Xiang R, Yuan MG, Xu ZH (2019) The effect of Clostridium butyricum on gut microbiota, immune response and intestinal barrier function during the development of necrotic enteritis in chickens. Front Microbiol 10:2309. https://doi.org/10.3389/fmicb.2019.02309

    Article  PubMed  PubMed Central  Google Scholar 

  5. Prescott JF, Parreira VR, Mehdizadeh Gohari I, Lepp D, Gong J (2016) The pathogenesis of necrotic enteritis in chickens: what we know and what we need to know: a review. Avian Pathol 45(3):288–294. https://doi.org/10.1080/03079457.2016.1139688

    Article  CAS  PubMed  Google Scholar 

  6. Timbermont L, Haesebrouck F, Ducatelle R, Van Immerseel F (2011) Necrotic enteritis in broilers: an updated review on the pathogenesis. Avian Pathol 40(4):341–347. https://doi.org/10.1080/03079457.2011.590967

    Article  CAS  PubMed  Google Scholar 

  7. Cooper KK, Bueschel DM, Songer JG (2013) Presence of Clostridium perfringens in retail chicken livers. Anaerobe 21(6):67–68. https://doi.org/10.1016/j.anaerobe.2013.03.013

    Article  PubMed  Google Scholar 

  8. Løvland A, Kaldhusdal M (1999) Liver lesions seen at slaughter as an indicator of necrotic enteritis in broiler flocks. FEMS Immunol Med Microbiol 24(3):345–351. https://doi.org/10.1111/j.1574-695X.1999.tb01304.x

    Article  PubMed  Google Scholar 

  9. Sasaki J, Goryo M, Makara M, Nakamura K, Okada K (2003) Necrotic hepatitis due to Clostridium perfringens infection in newly hatched broiler chicks. J Vet Med Sci 65(11):1249–1251. https://doi.org/10.1292/jvms.65.1249

    Article  PubMed  Google Scholar 

  10. Xue GD, Wu SB, Choct M, Swick RA (2017) The role of supplemental glycine in establishing a subclinical necrotic enteritis challenge model in broiler chickens. Anim Nutr 3(3):266–270. https://doi.org/10.1016/j.aninu.2017.05.004

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tsiouris V (2016) Poultry management: a useful tool for the control of necrotic enteritis in poultry. Avian Pathol 45(3):323–325. https://doi.org/10.1080/03079457.2016.1154502

    Article  CAS  PubMed  Google Scholar 

  12. Fasina YO, Newman MM, Stough JM, Liles MR (2016) Effect of Clostridium perfringens infection and antibiotic administration on microbiota in the small intestine of broiler chickens. Poult Sci 95(2):247–260. https://doi.org/10.3382/ps/pev329

    Article  CAS  PubMed  Google Scholar 

  13. Van Immerseel F, Rood JI, Moore RJ, Titball RW (2009) Rethinking our understanding of the pathogenesis of necrotic enteritis in chickens. Trends Microbiol 17(1):32–36. https://doi.org/10.1016/j.tim.2008.09.005

    Article  CAS  PubMed  Google Scholar 

  14. Rodrigues I, Svihus B, Bedford MR, Gous R, Choct M (2018) Intermittent lighting improves resilience of broilers during the peak phase of sub-clinical necrotic enteritis infection. Poult Sci 97(2):438–446. https://doi.org/10.3382/ps/pex315

    Article  CAS  PubMed  Google Scholar 

  15. Alagawany M, Abd El-Hack ME, Farag MR, Sachan S, Karthik K, Dhama K (2018) The use of probiotics as eco-friendly alternatives for antibiotics in poultry nutrition. Environ Sci Pollut Res Int 25(11):10611–10618. https://doi.org/10.1007/s11356-018-1687-x

    Article  CAS  PubMed  Google Scholar 

  16. Plaza-Diaz J, Gomez-Llorente C, Fontana L, Gil A (2014) Modulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver by probiotics. World J Gastroenterol 20(42):15632–15649. https://doi.org/10.3748/wjg.v20.i42.15632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Khalique A, Zeng D, Shoaib M, Wang H, Qing X, Rajput DS, Pan K, Ni X (2020) Probiotics mitigating subclinical necrotic enteritis (SNE) as potential alternatives to antibiotics in poultry. AMB Express 10(1):50. https://doi.org/10.1186/s13568-020-00989-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Caly DL, D’Inca R, Auclair E, Drider D (2005) Alternatives to antibiotics to prevent necrotic enteritis in broiler chickens: a microbiologist's perspective. Front Microbiol 6:1336. https://doi.org/10.3389/fmicb.2015.01336

    Article  Google Scholar 

  19. Lee NK, Kim WS, Paik HD (2019) Bacillus strains as human probiotics: characterization, safety, microbiome, and probiotic carrier. Food Sci Biotechnol 28(5):1297–1305. https://doi.org/10.1007/s10068-019-00691-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhao Y, Zeng D, Wang H, Qing X, Sun N, Xin J, Luo M, Khalique A, Pan K, Shu G, Jing B, Ni XQ (2019) Dietary probiotic Bacillus Licheniformis H2 enhanced growth performance, morphology of small intestine and liver, and antioxidant capacity of broiler chickens against Clostridium perfringens-induced subclinical necrotic enteritis. Probiotics Antimicrob Proteins 12:883–895. https://doi.org/10.1007/s12602-019-09597-8

    Article  CAS  Google Scholar 

  21. Zhou M, Zeng D, Ni X, Tu T, Yin Z, Pan K, Jing B (2016) Effects of Bacillus licheniformis on the growth performance and expression of lipid metabolism-related genes in broiler chickens challenged with Clostridium perfringens-induced necrotic enteritis. Lipids Health Dis 15:48. https://doi.org/10.1186/s12944-016-0219-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lu TX, Rothenberg ME (2018) MicroRNA. J Allergy Clin Immunol 141(4):1202–1207. https://doi.org/10.1016/j.jaci.2017.08.034

    Article  CAS  PubMed  Google Scholar 

  23. Naraballobh W, Trakooljul N, Murani E, Krischek C, Janisch S, Wicke M, Ponsuksili S, Wimmers K (2018) miRNAs regulate acute transcriptional changes in broiler embryos in response to modification of incubation temperature. Sci Rep 8(1):11371. https://doi.org/10.1038/s41598-018-29316-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854. https://doi.org/10.1016/0092-8674(93)90529-y

    Article  CAS  PubMed  Google Scholar 

  25. Xu XM, Zhang HJ (2016) miRNAs as new molecular insights into inflammatory bowel disease: crucial regulators in autoimmunity and inflammation. World J Gastroenterol 22(7):2206–2218. https://doi.org/10.3748/wjg.v22.i7.2206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ding S, Liu G, Jiang H, Fang J (2019) MicroRNA determines the fate of intestinal epithelial cell differentiation and regulates intestinal diseases. Curr Protein Pept Sci 20(7):666–673. https://doi.org/10.2174/1389203720666190125110626

    Article  CAS  PubMed  Google Scholar 

  27. Soroosh A, Koutsioumpa M, Pothoulakis C, Iliopoulos D (2018) Functional role and therapeutic targeting of microRNAs in inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol 314(2):G256–G262. https://doi.org/10.1152/ajpgi.00268.2017

    Article  CAS  PubMed  Google Scholar 

  28. Hasan N, Yang H (2009) Factors affecting the composition of the gut microbiota, and its modulation. PeerJ 7:e7502. https://doi.org/10.7717/peerj.7502

    Article  Google Scholar 

  29. Heydari Z, Rahaie M, Alizadeh AM, Agah S, Khalighfard S, Bahmani S (2019) Effects of Lactobacillus Acidophilus and Bifidobacterium Bifidum probiotics on the expression of microRNAs 135b, 26b, 18a and 155, and their involving genes in mice colon cancer. Probiot Antimicrob Proteins 11(4):1155–1162. https://doi.org/10.1007/s12602-018-9478-8

    Article  CAS  Google Scholar 

  30. Kreuzer-Redmer S, Bekurtz JC, Arends D, Bortfeldt R, Kutz-Lohroff B, Sharbati S, Einspanier R, Brockmann GA (2016) Feeding of Enterococcus Faecium NCIMB 10415 leads to intestinal miRNA-423-5p-induced regulation of immune-relevant genes. Appl Environ Microbiol 82(8):2263–2269. https://doi.org/10.1128/AEM.04044-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Forero DA, González-Giraldo Y, Castro-Vega LJ, Barreto GE (2019) qPCR-based methods for expression analysis of miRNAs. Biotechniques 67(4):192–199. https://doi.org/10.2144/btn-2019-0065

    Article  CAS  PubMed  Google Scholar 

  32. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108. https://doi.org/10.1038/nprot.2008.73

    Article  CAS  PubMed  Google Scholar 

  33. Yang WY, Lee Y, Lu H, Chou CH, Wang C (2019) Analysis of gut microbiota and the effect of lauric acid against necrotic enteritis in Clostridium Perfringens and Eimeria side-by-side challenge model. PLoS One 14(5):e0205784. https://doi.org/10.1371/journal.pone.0205784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Salim HM, Huque KS, Kamaruddin KM, Beg MDAH (2018) Global restriction of using antibiotic growth promoters and alternative strategies in poultry production. Sci Prog 101(1):52–75. https://doi.org/10.3184/003685018X15173975498947

    Article  CAS  PubMed  Google Scholar 

  35. Wang H, Ni X, Qing X, , Liu L, Lai J, Khalique A, Li G, Pan K, Jing B, Zeng D (2017). Probiotic enhanced intestinal immunity in broilers against subclinical necrotic enteritis. Front Immunol 8:1592. doi: https://doi.org/10.3389/fimmu.2017.01592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Qing X, Zeng D, Wang H, Ni X, Lai J, Liu L, Khalique A, Pan K, Jing B (2018) Analysis of hepatic transcriptome demonstrates altered lipid metabolism following Lactobacillus johnsonii BS15 prevention in chickens with subclinical necrotic enteritis. Lipids Health Dis 17(1):93. https://doi.org/10.1186/s12944-018-0741-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hong YH, Dinh H, Lillehoj HS, Song KD, Oh JD (2014) Differential regulation of microRNA transcriptome in chicken lines resistant and susceptible to necrotic enteritis disease. Poult Sci 93(6):1383–1395. https://doi.org/10.3382/ps.2013-03666

    Article  CAS  PubMed  Google Scholar 

  38. Wu G, Qi Y, Liu X, Yang N, Xu G, Liu L, Li X (2017) Cecal microRNAome response to Salmonella Enterica Serovar enteritidis infection in white leghorn layer. BMC Genomics 18(1):77. https://doi.org/10.1186/s12864-016-3413-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen Q, Tong C, Ma S, Zhou L, Zhao L, Zhao X (2017) Involvement of microRNAs in probiotics-induced reduction of the cecal inflammation by Salmonella Typhimurium. Front Immunol 8:704. https://doi.org/10.3389/fimmu.2017.00704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pham TT, Ban J, Hong Y, Lee J, Vu TH, Truong AD, Lillehoj HS, Hong YH (2020) MicroRNA gga-miR-200a-3p modulates immune response via MAPK signaling pathway in chicken afflicted with necrotic enteritis. Vet Res 51(1):8. https://doi.org/10.1186/s13567-020-0736-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mittal S, Sharma A, Balaji SA, Gowda MC, Dighe RR, Kumar RV, Rangarajan A (2014) Coordinate hyperactivation of Notch1 and Ras/MAPK pathways correlates with poor patient survival: novel therapeutic strategy for aggressive breast cancers. Mol Cancer Ther 13(12):3198–3209. https://doi.org/10.1158/1535-7163.MCT-14-0280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Maxeiner S, Grolleman J, Schmid T, Kammenga J, Hajnal A (2019) The hypoxia-response pathway modulates Ras/MAPK-mediated cell fate decisions in Caenorhabditis elegans. Life Sci Alliance 2(3):e201800255. https://doi.org/10.26508/lsa.201800255

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by the International Cooperative Project of Science and Technology Bureau of Sichuan Province (2018HH0103).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design of the experiments. HY and LL contributed reagents and materials. YZ, HW, and NS performed all experimental work. YZ drafted the manuscript. YZ, HY, and LL revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xueqin Ni.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Ethical Approval

All animal experiment procedures were conducted in accordance with the guidelines of the Animal Welfare Act, and all procedures and protocols were approved by the Institutional Animal Care and Use Committee of the Sichuan Agricultural University (approval number: SYXKchuan2019-187; approval date: September 10, 2019).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ying Zhao and Dong Zeng are joint first authors.

Electronic Supplementary Material

ESM 1

(PDF 1306 kb)

ESM 2

(XLS 225 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Zeng, D., Wang, H. et al. Analysis of miRNA Expression in the Ileum of Broiler Chickens During Bacillus licheniformis H2 Supplementation Against Subclinical Necrotic Enteritis. Probiotics & Antimicro. Prot. 13, 356–366 (2021). https://doi.org/10.1007/s12602-020-09709-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-020-09709-9

Keywords

Navigation