Skip to main content
Log in

Heavy metals accumulation and translocation in native plants grown on tailing dumps and human health risk

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

The heavy metal concentration in plant tissues of Ranunculus ficaria, Plantago major, Taraxacum officinale, and Achillea millefolium, frequently consumed or used in traditional medicine, collected from one of radioactive area of Romania, not been previously reported by any research group. The content of Cr, Mn, Ni, Cu, Zn, Cd, Pb were determined by ICP-MS. To evaluate the level of pollution, the plants are examined to determine the EDI, HRI and TTHQ values, to reach a judgment about whether their consumption is risky or not in terms of human health. The high amounts of Cd, Mn and Pb, in tissues of Taraxacum officinale and Plantago major, lead to the fact that the ecosystem in which these species are growing should be evaluated by the authorities in terms of environmental pollution. DIM and HRI data showed that A. millefiori and R. ficaria can be safely used by locals, while T. officinale and P. major are thought to pose a risk in terms of heavy metals. Accumulation of metals by both roots and leaves in T. officinale and P. major was proportional to the metal concentration in the tailings dumps, while Cr, Mn, Cd, and Pb content exceeded the maximum permissible daily levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BaF:

Bioaccumulation Factor / Transfer Factor

CR:

Carcinogenic Risk

CSF:

Cancer Slope Factor

DIM:

Daily Intake Metal

EDI:

Estimated daily intakes

HRI:

Human Risk Index

ICP-MS:

Inductive Coupled Plasma Mass Spectrometry

LOD:

Limit of Detection

LOQ:

Limit of Quantification

NIST:

National Institute of Standards and Technology

RfD:

Reference Dose

RSD:

Relative Standard Deviation

SD:

Standard Deviation

SRM:

Standard Reference Material

STD:

Standard mode

TF:

Translocation Factor

THQ:

Target Hazard Quotient

References

  • Adriano DC (2001) Trace elements in terrestrial environments – biogeochemistry, bioavailability and risk of metals, 2nd edn., Springer-Verlag New York

  • Arias-Duran L, Estrada-Soto S, Hernandez-Morales M, Chavez-Silva F, Navarrete-Vazquez G, Leon-Rivera I, Perea-Arango I, Villalobos-Molina R, Ibarra-Barajas M (2020) Tracheal relaxation through calcium channel blockade of Achillea millefolium hexanic extract and its main bioactive compounds. J Ethnopharmacol 253:112643. https://doi.org/10.1016/j.jep.2020.112643

    Article  CAS  PubMed  Google Scholar 

  • Artugyan LF (2014) Geomorphological Risk and Denudational Index (Land Erodability) in Karstic Terrain of Anina Mining Area (Banat Mountains, Romania). Forum geografic. Studii și cercetări de geografie și protecția mediului XIII(2):203–211 https://doi.org/10.5775/fg.2067-4635.2014.141.d

  • Artugyan LF (2015) PhD Thesis - Studiu de geomorfologie carstică integrată a arealului carstic Anina (Munţii Banatului), West University of Timisoara

  • Atique Ullah AKM, Maksud MA, Khan SR, Lutfa LN, Quraishi SB (2017) Dietary intake of heavy metals from eight highly consumed species of cultured fish and possible human health risk implications in Bangladesh. Toxicol Rep 4:574–579. https://doi.org/10.1016/j.toxrep.2017.10.002

    Article  CAS  Google Scholar 

  • Barbes L, Barbulescu A, Radulescu C, Stihi C, Chelarescu ED (2014) Determination of heavy metals in leaves and bark of Populus nigra L by atomic absorption spectrometry. Rom Rep Phys 66(3):877–886

    Google Scholar 

  • Bradl HB (2005) Sources and origins of heavy metals. In Bradl HB (ed.) heavy metals in the environment: origin, interaction and remediation, Vol. 6, 1st edn., Elsevier academic press, London, pp 1-11

  • Bucur II (1997) Formaţiunile mezozoice din zona Reşiţa-Moldova Nouă (Munţii Aninei şi estul Munţilor Locvei), Ed. Presa Universitară Clujeană, Cluj- Napoca, pp 214

  • Buruleanu LC, Radulescu C, Georgescu AA, Danet FA, Olteanu RL, Nicolescu CM, Dulama ID (2018) Statistical characterization of the phytochemical characteristics of edible mushroom extracts. Anal Lett 51(7):1039–1059. https://doi.org/10.1080/00032719.2017.1366499

    Article  CAS  Google Scholar 

  • Buruleanu LC, Radulescu C, Georgescu AA, Dulama ID, Nicolescu CM, Olteanu RL, Stanescu SG (2019) Chemometric assessment of the interactions between the metal contents, antioxidant activity, total phenolics, and flavonoids in mushrooms. Anal Lett 52(8):1195–1214. https://doi.org/10.1080/00032719.2018.1528268

    Article  CAS  Google Scholar 

  • Carrington C, Bolger M, Larsen JC, Peterson B (2000) World health organization - international Programme on chemical safety, safety evaluation of certain food additives and contaminants. WHO food Addit. Ser. 44 – Lead. Available online http://www.inchem.org/documents/jecfa/jecmono/v44jec12.htm. Last accessed 12 Jul 2019

  • Chen J, Gu G, Royer RA, Burgos WD (2003) The role of natural organic matter in chemical and microbial reduction of ferric iron. Sci Total Environ 307:167–178. https://doi.org/10.1016/S0048-9697(02)00538-7

    Article  CAS  PubMed  Google Scholar 

  • Dulama ID, Popescu IV, Stihi C, Radulescu C, Cimpoca GV, Toma LG, Stirbescu RM, Nitescu O (2012) Studies on accumulation of heavy metals in Acacia leaf by EDXRF. Rom. Rep. Phys. 64(4):1063–1071

    CAS  Google Scholar 

  • European Food Safety Authority - Panel on Contaminants in the Food Chain (2011) Statement on tolerable weekly intake for cadmium. EFSA J. 9(2):1975. Available online https://efsa.onlinelibrary.wiley.com/doi/pdf/10.2903/j.efsa.2011.1975. Last accessed 12 Jul 2019

  • Food and Agriculture Organization of United Nations – FAO (2004) Codex methods of sampling – general guidelines on sampling CAC/GL 50–2004. Available online http://www.fao.org/uploads/media/Codex_2004_sampling_CAC_GL_50.pdf. Last accessed 12 Jul 2019

  • Ganeshkumar A, Arun G, Vinothkumar S, Rajaram R (2019) Bioaccumulation and translocation efficacy of heavy metals by Rhizophora mucronata from tropical mangrove ecosystem, southeast coast of India. Ecohydrol Hydrobiol 19(1):66–74. https://doi.org/10.1016/j.ecohyd.2018.10.006

    Article  Google Scholar 

  • Geological Institute of Romania, Geoportal (2020). Available online http://geoportal.igr.ro/viewgeol1M.php (last accessed 22nd July 2020)

  • Georgescu AA, Danet AF, Radulescu C, Stihi C, Dulama ID, Buruleanu CL (2017) Nutritional and food safety aspects related to the consumption of edible mushrooms from Dambovita County in correlation with their levels of some essential and non-essential metals. Rev. Chim (Bucharest) 68(10):2402–2406

    CAS  Google Scholar 

  • Gerhart VJ, Waugh WJ, Glenn EP, Pepper IL (2004) Ecological Restoration. In: Artiola JF, Pepper IL, Brusseau ML (eds) Environmental monitoring and characterization. Elsevier Academic Press, Burlington, pp 357–375

    Chapter  Google Scholar 

  • Hadaruga NG (2012) Ficaria vernaHuds. Extracts and their β-cyclodextrin supramolecular systems. Chem. Cent. J. 6:16 https://doi.org/10.1186/1752-153X-6-16

  • Institute of Medicine - Panel on Micronutrients (2001) Dietary reference intakes for vitamin a, vitamin K, arsenic, boron, chromium, copper, iodine, Iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc, National Academy Press, Washington D.C. Available online https://www.ncbi.nlm.nih.gov/books/NBK222310/. Last accessed 12 Jul 2019

  • Jan S, Rashid B, Azooz MM, Hossain MA, Ahmad P (2016) Genetic strategies for advancing phytoremediation potential in plants: a recent update. In: Ahmad P (ed) Plant metal interaction – emerging remediation techniques. Elsevier Academic Press, Amsterdam, pp 431–454

    Chapter  Google Scholar 

  • Jaric S, Popovic Z, Macukanovic-Jocic M, Djurdjevic L, Mijatovic M, Karadzic B, Mitrovic M, Pavlovic P (2007) An ethnobotanical study on the usage of wild medicinal herbs from Kopaonik Mountain (Central Serbia). J Ethnopharmacol 111(1):160–175 https://doi.org/10.1016/j.jep.2006.11.007

  • Kabata-Pendias A, Pendias H (2001) Trace elements in soil and plants, 3rd edn., CRC Press, Boca Raton

  • Khan S, Farooq R, Shahbaz S, Khan MA, Sadique M (2009) Health risk assessment of heavy metals for population via consumption of vegetables. World Appl Sci J 6:1602–1606

    CAS  Google Scholar 

  • Lal R (2016) Tenets of soil and landscape restoration. In: Chabay I, Frick M, Helgeson J (eds) Land restoration – reclaiming landscapes for a sustainable future. Elsevier Academic Press, Waltham, pp 79–96

    Google Scholar 

  • Likuku AS, Obuseng G (2015) Health risk assessment of heavy metals via dietary intake of vegetables irrigated with treated wastewater around Gaborone, Botswana. Proc. Int. Conf. On plant, marine and environmental sciences (PMES-2015). http://dx.doi.org/https://doi.org/10.15242/IICBE.C0115069

  • Lis B, Olas B (2019) Pro-health activity of dandelion (Taraxacum officinale L.) and its food products – history and present. J Funct Food 59:40–48. https://doi.org/10.1016/j.jff.2019.05.012

    Article  CAS  Google Scholar 

  • Lund LJ, Betty EE, Page AL, Elliott RA (1981) Occurrence of naturally high cadmium levels in soils and its accumulation by vegetation. J Environ Qual 10(4):551–556. https://doi.org/10.2134/jeq1981.00472425001000040027x

    Article  CAS  Google Scholar 

  • Made M, Yin Y, Zhang D, Liu J (2016) Methods and recent advances in speciation analysis of mercury chemical species in environmental samples: a review. Chem. Spec. Bioavailab. 28:51–65. https://doi.org/10.1080/09542299.2016.1164019

    Article  CAS  Google Scholar 

  • McBride MB (1994) Environmental chemistry of soils. Oxford University Press, New York

    Google Scholar 

  • Nichols JW, Bonnell M, Dimitrov SD, Escher BI, Han IX, Kramer NI (2009) Bioaccumulation assessment using predictive approaches. Integr Environ Assess Manag 5(4):577–597. https://doi.org/10.1897/IEAM-2008-088.1

    Article  CAS  PubMed  Google Scholar 

  • Page AL, Chang AC, El-Amamy M (1987) Cadmium levels in soil and crops in the United States. In: Hutchinson TC, Meema KM (eds) Lead, mercury, cadmium and arsenic in the environment. John Wiley and Sons, Chichester, New York, Brisbane, Toronto

    Google Scholar 

  • Papaioannou D, Kalavrouziotis IK, Koukoulakis PH, Papadopoulos F, Psoma P (2018) Interrelationships of metal transfer factor under wastewater reuse and soil pollution. J Environ Manag 216:328–336. https://doi.org/10.1016/j.jenvman.2017.04.008

    Article  CAS  Google Scholar 

  • Prasad MNV (1994) Heavy metal stress in plants. From biomolecules to ecosystems, 2nd edn., springer-Velag, Berlin Heidelberg

  • Pehoiu G, Radulescu C, Murarescu O, Dulama ID, Bucurica IA, Teodorescu S, Stirbescu RM (2019) Health risk assessment associated with abandoned copper and uranium mine tailings. Bull Environ Contam Toxicol 102(4):504–510. https://doi.org/10.1007/s00128-019-02570-9

    Article  CAS  PubMed  Google Scholar 

  • Postolache C, Postolache C (2000) Introducere în ecotoxicologie, Ed. Ars Docendi, Bucharest

    Google Scholar 

  • Radulescu C, Buruleanu CL, Georgescu AA, Dulama ID (2019) Correlation between enzymatic and non-enzimatic antioxidants in several edible mushrooms species. In: Coldea ET (ed) Food Engineering. IntechOpen, London

    Google Scholar 

  • Radulescu C, Stihi C, Busuioc G, Gheboianu AI, Popescu IV (2010a) Studies concerning heavy metals bioaccumulation of wild edible mushrooms from industrial area by using spectrometric techniques. Bull Environ Contam Toxocol 84(5):641–647. https://doi.org/10.1007/s00128-010-9976-1

    Article  CAS  Google Scholar 

  • Radulescu C, Stihi C, Popescu IV, Busuioc G, Gheboianu A, Cimpoca GV, Dulama ID, Diaconescu M (2010b) Determination of heavy metals content in wild mushrooms and soil by EDXRF and FAAS techniques. Ovidius Univ Ann Chem 1(21):9–14

    Google Scholar 

  • Radulescu C, Stihi C, Popescu IV, Ionita I, Dulama ID, Chilian A, Bancuta OR, Chelarescu ED, Let D (2013) Assessment of heavy metals level in some perennial medicinal plants by flame atomic absorption spectrometry. Rom. Rep. Phys. 65(1):246–260

    CAS  Google Scholar 

  • Radulescu C, Stihi C , Barbes L, Chilian A, Chelarescu DE (2013b) Studies concerning heavy metals accumulation of Carduus nutans L. and Taraxacum officinale as potential soil bioindicator species. Rev. Chim. (Bucharest) 64(7): 754-760

  • Radulescu C, Stihi C, Popescu IV, Dulama ID, Chelarescu ED, Chilian A (2013c) Heavy metal accumulation and translocation in different parts of Brassica olearcea L. Rom J Phys 58(9–10):1337–1354

    CAS  Google Scholar 

  • Radulescu C, Stihi C, Dulama ID (2014) Elemental analysis methods for particulate matter. Chemical speciation. Analytical method validation. In Iordache S, Dunea D (eds.) methods for the assessment of air pollution with particulate matter to children’s health, MatrixROM, Bucharest, pp 119-188. https://doi.org/10.13140/rg.2.1.4798.3204

  • Ryan JA, Pahren HR, Lucas JB (1982) Controlling cadmium in the human food chain: a review and rationale based on health effects. Environ Res 28(2):251–302. https://doi.org/10.1016/0013-9351(82)90128-1

    Article  CAS  PubMed  Google Scholar 

  • Romanian Health Ministry (1998) Romanian Order no. 975/16.12.1998 – Hygienic and sanitary norms for food. Available online http://www.labrom.ro/wp-content/uploads/2013/03/O-975-norme-igienico-sanitare-marieta.pdf. Last accessed 12 Jul 2019

  • Sinha RK, Herat S, Tandon P (2007) Phytoremediation: role of plants in contaminated site management. In: Singh SN, Tripathi RD (eds) Environmental bioremediation technologies. Springer, Berlin, Heidelberg, pp 315–330. https://doi.org/10.1007/978-3-540-34793-4_14

    Chapter  Google Scholar 

  • Tang C, Chen Y, Zhang Q, Li J, Zhang F, Liu Z (2019) Effects of peat on plant growth and lead and zinc phytostabilization from lead-zinc mine tailing in southern China: screening plant species resisting and accumulating metals. Ecotoxicol Environ Saf 176:42–49. https://doi.org/10.1016/j.ecoenv.2019.03.078

    Article  CAS  PubMed  Google Scholar 

  • Tangahu V, Sheikh Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (as, Pb, and hg) uptake by plants through phytoremediation. Int J Chem Engin 2011:939161–939131. https://doi.org/10.1155/2011/939161

    Article  Google Scholar 

  • U.S. Environmental Protection Agency – Integrated Risk Information System (IRIS), Lead and compounds (inorganic) (2019) CASRN 7439-92-1. Available online https://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/0277_summary.pdf. Last accessed 12 Jul 2019

  • U.S. Environmental Protection Agency – Integrated Risk Information System (IRIS) (2019a), Chromium (VI); CASRN 18540–29-9. Available online https://cfpub.epa.gov/ncea /iris/iris_documents/documents/subst/0144_summary.pdf. Last accessed 12 Jul 2019

  • U.S. Environmental Protection Agency – Integrated Risk Information System (IRIS), Chromium(III) (2019), insoluble salts; CASRN 16065–83-1. Available online https://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/0028_summary.pdf. Last accessed 12 Jul 2019

  • U.S. Environmental Protection Agency – Integrated Risk Information System (IRIS), Manganese (2019) CASRN 7439-96-5. Available online https://cfpub.epa.gov/ncea/ iris/iris_documents/documents/subst/0373_summary.pdf. Last accessed 12 Jul 2019

  • U.S. Environmental Protection Agency – Integrated Risk Information System (IRIS), Nickel, soluble salts (2019) CASRN Various. Available online https://cfpub.epa.gov/ncea/iris/ iris_documents/documents/subst/0271_summary.pdf. Last accessed 12 Jul 2019

  • U.S. Environmental Protection Agency – Integrated Risk Information System (IRIS), Copper (2019) CASRN 7440-50-8. Available online https://cfpub.epa.gov/ncea/iris/iris_documents/ documents/subst/0368_summary.pdf. Last accessed 12 Jul 2019

  • U.S. Environmental Protection Agency – Integrated Risk Information System (IRIS), Zinc and Compounds (2019) CASRN 7440-66-6. Available online https://cfpub.epa.gov/ncea/iris/ iris_documents/documents/subst/0426_summary.pdf. Last accessed 12 Jul 2019

  • U.S. Environmental Protection Agency – Integrated Risk Information System (IRIS) (2019b), Cadmium; CASRN 7440-43-9. Available online https://cfpub.epa.gov/ncea/iris/ iris_documents/documents/subst/0141_summary.pdf. Last accessed 12 Jul 2019

  • VanBriesen JM, Small M, Weber CP, Wilson JN (2010) Modelling chemical speciation: thermodynamics, kinetics and uncertainty. In: Hanrahan G (ed) Modelling of pollutants in complex environmental systems, vol II. ILM Publication, New York, pp 133–149

    Google Scholar 

  • Wang Z, Liu X, Qin H (2019) Bioconcentration and translocation of heavy metals in the soil-plants system in Machangqing copper mine, Yunnan Province. China J Geochem Explor 200:159–166. https://doi.org/10.1016/j.gexplo.2019.02.005

    Article  CAS  Google Scholar 

  • Waring RH, Running SW (2007) Forest ecosystems, 3rd edn. Elsevier Academic Press, Burlington

  • Wolnik KA, Fricke FL, Capar SG, Meyer MW, Satzger RD, Bonnin E, Gaston CM (1985) Elements in major raw agricultural crops in the United States. 3. Cadmium, lead, and eleven other elements in carrots, field corn, onions, rice, spinach, and tomatoes. J. Agric. Food Chem 33(5):807–811. https://doi.org/10.1021/jf00065a010

    Article  CAS  Google Scholar 

  • Yang Y, Li Y, Zhang J (2016) Chemical speciation of cadmium and lead and their bioavailability to cole (Brassica campestris L.) from multi-metals contaminated soil in northwestern China. Chem Spec Bioavailab 28:33–41. https://doi.org/10.1080/09542299.2016.1157005

    Article  CAS  Google Scholar 

  • Yoshida S, Muramatsu Y, Uchida S (1998) Soil-solution distribution coefficients, Kds, of I and IO3 for 68 Japanese soils. Radiochim Acta 82:293–297. https://doi.org/10.1524/ract.1998.82.special-tissue.293

    Article  CAS  Google Scholar 

  • Zacarias M, Beltrana M, Torres LG, Gonzalez A (2012) A feasibility study of perennial/annual plant species to restore soils contaminated with heavy metals. Phys Chem Earth 37-39:37–42. https://doi.org/10.1016/j.pce.2010.12.008

    Article  Google Scholar 

  • Zhu G, Xiao H, Guo Q, Song B, Zheng G, Zhang Z, Zhao J, Okolic CP (2018) Heavy metal contents and enrichment characteristics of dominant plants in wasteland of the downstream of a lead-zinc mining area in Guangxi, Southwest China. Ecotox Environ Safe 151:266–271. https://doi.org/10.1016/j.ecoenv.2018.01.011

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ovidiu Murarescu, Cristiana Radulescu or Ioan Alin Bucurica.

Additional information

Responsible Editor: Longbin Huang.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pehoiu, G., Murarescu, O., Radulescu, C. et al. Heavy metals accumulation and translocation in native plants grown on tailing dumps and human health risk. Plant Soil 456, 405–424 (2020). https://doi.org/10.1007/s11104-020-04725-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-020-04725-8

Keywords

Navigation