Skip to main content
Log in

Surface Properties of Liquid Al-Ni Alloys: Experiments Vs Theory

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

The present study is an overview of the surface properties of liquid Al-Ni alloys, which are of great importance for the design and development of new Al-Ni and Ni-based industrial alloys, widely used as functional and structural materials. The solidification and thus, the microstructural evolution are directly dependent on the interface/surface properties of metallic melts. Therefore, numerical simulation of microstructure evolution requires reliable property data as input to such models. Taking into account the experimental difficulties related to a high reactivity of liquid Al-Ni alloys and the effects of impurities on their surface properties, the surface tension over the whole concentration range has been determined in the frameworks of three international research projects. Namely, the surface tension measurements have been carried out by both traditional container-based and as an alternative, containerless methods within the ESA-MAP ThermoProp and ESA-MAP Thermolab Projects and also under the EU FP6-IMPRESS Project. The obtained datasets were analysed and subsequently compared with the model predicted values as well as with the literature data. A strong exothermic mixing characterises the Al-Ni system and the presence of a few intermetallic compounds in the solid state leads to the formation of short range ordered elements or complexes in the liquid phase, at least near the melting temperature, which significantly affects the surface properties of alloy melts. Aiming to estimate the effects of short range ordering on these properties, the Compound Formation Model (CFM) and the Quasi Chemical Approximation (QCA) for regular solution were applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amore, S., Valenza, F., Giuranno, D., Novakovic, R., Dalla Fontana, G., Battezzati, L., Ricci, E.: Thermophysical properties of some Ni-based superalloys in the liquid state relevant for solidification processing. J. Mater. Sci. 51, 1680–1688 (2016)

    Google Scholar 

  • Ansara, I., Dupin, N., Lukas, H.L., Sundman, B.: Thermodynamic assessment of the Al-Ni system. J. Alloys Compd. 247(1–2), 20–30 (1997)

    Google Scholar 

  • Ashby, M.F., Bréchet, Y.J.M., Cebon, D., Salvo, L.: Selection strategies for materials and processes. Mater. Design. 25(1), 51–67 (2004)

    Google Scholar 

  • Aune, R., Battezzati, L., Egry, I., Etay, J., Fecht, H.J., Giuranno, D., Novakovic, R., Passerone, A., Ricci, E., Schmidt-Hohagen, F., Seetharaman, S., Wunderlich, R.: Surface tension measurements of Al-Ni based alloys from ground-based and parabolic flight experiments: results from the thermolab projects. Microgravity Sci. Technol. XVIII(3/4), 73–76 (2006)

    Google Scholar 

  • Ayushina, G.D., Levin, E.S., Gel’d, P.V.: The density and surface energy of liquid alloys of aluminium with cobalt and nickel. Russ. J. Phys. Chem. 43(11), 1548–1551 (1969)

    Google Scholar 

  • Basaran, O.A.: Nonlinear oscillations of viscous liquid drops. J. Fluid Mech. 241, 169–198 (1992)

    MATH  Google Scholar 

  • Bashforth, F., Adams, J.: An Attempt to Test the Theories of Capillary Action. Cambridge University Press, Cambridge (1883)

    Google Scholar 

  • Bhatia, A.B., Hargrowe, W.H.: Concentration fluctuations and thermodynamic properties of some compound forming binary molten systems. Phys. Rev. B. 10, 3186–3196 (1974)

    Google Scholar 

  • Brillo, J.: Thermophysical Properties of Multicomponent Liquid Alloys. deGruyter Oldenbourg, Berlin (2016)

  • Brillo, J., Egry, I.: Surface tension of nickel, copper, iron and their binary alloys. J. Mater. Sci. 40, 2213–2216 (2005)

    Google Scholar 

  • Brillo, J., Kolland, G.: Surface tension of liquid Al-Au binary alloys. J. Mater. Sci. 51, 4888–4901 (2016)

    Google Scholar 

  • Brillo, J1., Lohöfer, G., Schmid-Hohagen, F., Schneider, S., Egry, I.: Thermophysical property measurements of liquid metals by electromagnetic levitation. Int. J. Mater. Prod. Tec. 26, 247–273 (2006a)

  • Brillo, J2., Egry, I., Ho, I.: Density and thermal expansion of liquid Ag-Cu and Ag-Au alloys. Int. J. Thermophys. 27, 494–506 (2006b)

  • Brillo, J3., Bytchkov, A., Egry, I., Hennet, L., Mathiak, G., Pozdnyakova, I., Price, D.L., Thiaudiere, D., Zanghi, D.; Local structure in liquid binary Al-Cu and Al-Ni alloys. J. Non-Cryst. Solids 352, 4008–4012 (2006c)

  • Busse, F.H.: Oscillations of a rotating liquid drop. J. Fluid Mech. 142, 1–8 (1984)

    MathSciNet  MATH  Google Scholar 

  • Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Dover Publications, New York (1981)

    MATH  Google Scholar 

  • Chrifi-Alaoui, F.Z., Nassik, M., Mahdouk, K., Gachon, J.C.: Enthalpies of formation of the Al-Ni intermetallic compounds. J. Alloy. Compd. 364, 121–126 (2004)

    Google Scholar 

  • Cormier, J.: Ni- and Co-based superalloys and their coatings. Metals. 8(1055), 1–3 (2018)

    Google Scholar 

  • Costa, C., Delsante, S., Borzone, G., Zivkovic, D., Novakovic, R.: Thermodynamic and surface properties of liquid Co-Cr-Ni alloys. J. Chem. Thermodyn. 69, 73–84 (2014)

    Google Scholar 

  • Cummings, D.L., Blackburn, D.A.: Oscillations of magnetically levitated aspherical droplets. J. Fluid Mech. 224, 395–416 (1991)

    MATH  Google Scholar 

  • De, S., Zhang, J., Luque, R., Yan, N.: Ni-based bimetallic heterogeneous catalysts for energy and environmental applications. Energy Environ. Sci. 9, 3314–3347 (2016)

    Google Scholar 

  • Defay, R.: Thermodynamique de la Tension Superficielle. Gauthier-Villars, Paris (1971)

    MATH  Google Scholar 

  • Duan, S.-C., Guo, H.-J.: Determination of viscosity and surface tension of liquid Ni-Al-Ti system using the evaluated thermodynamic properties by AMCT. J. Mater. Sci. 55, 11071–11085 (2020)

    Google Scholar 

  • Dupin, N., Ansara, I., Sundman, B.: Thermodynamic re-assessment of the ternary system Al-Cr-Ni. Calphad. 25(2), 279–298 (2001)

    Google Scholar 

  • Egry, I.: Surface tension measurements of liquid metals by the oscillating drop technique. J. Mater. Sci. 26, 2997–3003 (1991)

    Google Scholar 

  • Egry, I., Giffard, H., Schneider, S.: The oscillating drop technique revisited. Meas. Sci. Technol. 16, 426–431 (2005)

    Google Scholar 

  • Egry, I., Brillo, J., Holland-Moritz, D., Plevachuk, Y.: The surface tension of liquid aluminium-based alloys. Mater. Sci. Eng. A. 495, 14–18 (2008)

    Google Scholar 

  • Egry, I1., Brooks, R., Holland-Moritz, D., Novakovic, R., Matsushita, T., Plevachuk, Yu., Ricci, E., Seetharaman, S., Sklyarchuk, V., Wunderlich, R., Thermophysical properties of liquid Al-Ni alloys, High Temp.-High Press. 38(4), 343–351 (2010a)

  • Egry, I2., Ricci, E., Novakovic, R., Ozawa, S.: Surface tension of liquid metals and alloys-recent developments. Adv. Colloid. Interface Sci. 159, 198–212 (2010b)

  • Egry, I3., Holland-Moritz D., Novakovic R., Ricci E., Wunderlich R., Sobczak N.: Thermophysical properties of liquid AlTi-based alloys. Int. J. Thermophys. 31, 949–965 (2010c)

  • Eremenko, V.N., Nizhenko, V.I., Naidich, Y.V.: Izv. Akad. Nauk SSSR. Metallurgiya i Topivo. 3, 150–154 (1961) (in Russian)

    Google Scholar 

  • Fecht, H.J.: The thermoLab project: high-precision thermophysical property data of liquid metals for modelling of industrial solidification processes. High Temp. Mater. Proc. Spec. Issue. 27(6), 385–388 (2008)

    Google Scholar 

  • Fecht, H.-J., Wunderlich, R.K.: Fundamentals of liquid processing in low earth orbit: from thermophysical properties to microstructure formation in metallic alloys. JOM. 69(8), 1261–1268 (2017)

    Google Scholar 

  • Fecht, H.-J., Schneider, S., Wunderlich, R.K., Battezzati, L., Papandrea, C., Palumbo, M., Egry, I., Mills, K., Quested, P., Brooks, R., Giuranno, D., Novakovic, R., Passerone, A., Ricci, E., Seetharaman, S., Aune, R., Vinet, B., Garandet, J.-P.: Measurement of thermophysical properties of liquid metallic alloys in a ground- and microgravity based research program. The thermolab project. Metallurgia Italiana. 97(3), 47–53 (2005)

    Google Scholar 

  • Ferreira, I.L., Garcia, A.: The application of numerical and analytical approaches for the determination of thermophysical properties of Al-Si-Cu-Mg alloys. Contin. Mech. Thermodyn. 32, 1231–1244 (2020)

    Google Scholar 

  • Fowler, R.H., Guggenheim, E.A.: Statistical Thermodynamics. Cambridge University Press, Cambridge (1960)

    MATH  Google Scholar 

  • Furrer, D., Fecht, H.: Ni-based superalloys for turbine discs. JOM. 51(1), 14–17 (1999)

    Google Scholar 

  • Giuranno, D., Tuissi, A., Novakovic, R., Ricci, E.: Surface tension and density of Al-Ni alloys. J. Chem. Eng. Data. 55(9), 3024–3028 (2010)

    Google Scholar 

  • Giuranno, D., Amore, S., Novakovic, R., Ricci, E.: Surface tension and density of RENE N5 and RENE 90 Ni-based superalloys. J. Mater. Sci. 50, 3763–3771 (2015)

    Google Scholar 

  • Guggenheim, E.A.: Mixtures, p. 271. Oxford University Press, London (1952)

    Google Scholar 

  • Iida, T., Guthrie, R.I.L.: The Physical Properties of Liquid Metals. Clarendon Press, Oxford (1993)

    Google Scholar 

  • IMPRESS-Intermetallic Materials Processing in Relation to Earth and Space Solidification. Integrated Project, NMP3-CT-2004-500635, Final Activity Report. 2004–2009 October 31 2009

  • Jarvis, D.J., Voss, D.: IMPRESS integrated project-an overview paper. Mater. Sci. Eng. A. 413–414, 583–591 (2005)

    Google Scholar 

  • Johnson, G.R., Palmer, L.D.: Quad-cell mass spectrometry: thermodynamic properties of liquid aluminium-nickel alloys. High Temp. High Press. 12(3), 261–266 (1980)

    Google Scholar 

  • Keller, T., Lindwall, G., Ghosh, S., Ma, L., Lane, B.M., Zhang, F., Kattner, U.R., Lass, E.A., Heigel, J.C., Idell, Y., Williams, M.E., Allen, A.J., Guyer, J.E., Levine, L.E.: Application of finite element, phase-field, and CALPHAD-based methods to additive manufacturing of Ni-based superalloys. Acta Mater. 139(15), 244–253 (2017)

    Google Scholar 

  • Kobatake, H., Brillo, J., Schmitz, J., Pichon, P.-Y.: Surface tension of binary Al-Si liquid alloys. J. Mater. Sci. 50, 3351–3360 (2015)

    Google Scholar 

  • Korozs, J., Kaptay, G.: Derivation of the Butler equation from the requirement of the minimum Gibbs energy of a solution phase, taking into account its surface area. Colloids Surf. A Physicochem. Eng. Asp. 533, 296–301 (2017)

    Google Scholar 

  • Kozakevitch, P., Urbain, G.: Mém. Sci. Rev. Metall. 58, 401, p. 517, p. 931 (1961)

    Google Scholar 

  • Lee, J.-J., Sommer, F.: Determination of partial enthalpies of mixing of aluminum-rich alloy melts by solution calorimetry. Z. Metallkd. 76(11), 750–754 (1985)

    Google Scholar 

  • Levin, E.S., Ayushina, G.D.: Density and surface properties of liquid Al-alloys with chromium, iron, cobalt and nickel. Izv. Ural. Polytechn. Inst. 231, 93–96 (1974) (in Russian)

    Google Scholar 

  • Lohöfer, G.: Viscosity measurement by the “oscillating drop method”: the case of strongly damped oscillations. Int. J. Thermophys. 41, 30 (2020)

    Google Scholar 

  • Lohöfer, G., Neuhaus, P., Egry, I.: TEMPUS – a facility for measuring thermophysical properties of undercooled liquid metals. High. Temp. High. Press. 23, 333–342 (1991)

    Google Scholar 

  • Mashayek, F., Ashgriz, N.: Nonlinear oscillations of drops with internal circulation. Phys. Fluids. 10, 1071–1082 (1998)

    Google Scholar 

  • Maze, C., Burnet, G.: A non-linear regression method for calculating surface tension and contact angle from the shape of a sessile drop. Surf. Sci. 13(2), 451–470 (1969)

    Google Scholar 

  • Maze, C., Burnet, G.: Modification of a non-linear regression technique used to calculate surface tension from sessile drops. Surf. Sci. 24, 335–342 (1971)

    Google Scholar 

  • Mills, K.C., Su, Y.C.: Review of surface tension data for metallic elements and alloys: part 1-pure metals. Int. Mater. Rev. 51(6), 329–351 (2006)

    Google Scholar 

  • Mohr, M1., Wunderlich, R.K., Koch, S., Galenko, P.K., Gangopadhyay, A.K., Kelton, K.F., Jiang, J.Z., Fecht, H.-J.: Surface tension and viscosity of Cu50Zr50 measured by the oscillating drop technique on board the international space station. Microgravity Sci. Technol. 31, 177–184 (2019a)

  • Mohr, M2., Wunderlich, R., Dong, Y., Furrer, D., Fecht, H.-J.: Thermophysical properties of advanced Ni-based superalloys in the liquid state measured on board the international space station, Adv. Eng. Mater. 22 1901228, 1–10 (2019b)

  • Molina, J.M., Voytovych, R., Louis, E., Eustathopoulos, N.: The surface tension of liquid aluminium in high vacuum: the role of surface condition. Int. J. Adh. Adhes. 27, 394–401 (2007)

    Google Scholar 

  • Naidich, Y.V.: The wettability of solids by liquid metals. In: Cadenhead, D.A., Danielli, J.F. (eds.) Progress in Surface and Membrane Science, pp. 353–484. Academic Press, New York (1981)

    Google Scholar 

  • Nandwana, P., Elliott, A.M., Siddel, D., Merriman, A., Peter, W.H., Babu, S.S.: Powder bed binder jet 3D printing of Inconel 718: densification, microstructural evolution and challenges. Curr. Opin. Solid State Mater. Sci. 21(4), 207–218 (2017)

    Google Scholar 

  • Nash, P., Kleppa, O.: Composition dependence of the enthalpies of formation of NiAl. J. Alloy. Compd. 321, 228–231 (2001)

    Google Scholar 

  • Novakovic, R., Tanaka, T.: Bulk and surface properties of Al-Co and Co-Ni liquid alloys. Physica B. Condens. Matter. 371, 223–231 (2006)

    Google Scholar 

  • Novakovic, R., Zivkovic, D.: Thermodynamics and surface properties of liquid Ga-X (X = Sn, Zn) alloys. J. Mater. Sci. 40, 2251–2257 (2005)

    Google Scholar 

  • Novakovic, R., Ricci, E., Gnecco, F., Giuranno, D., Borzone, G.: Surface properties of Au-Sn liquid alloys. Surf. Sci. 599(1–3), 230–247 (2005)

    Google Scholar 

  • Nowak, R., Lanata, T., Sobczak, N., Ricci, E., Giuranno, D., Novakovic, R., Holland-Moritz, D., Egry, I.: Surface tension of γ-TiAl-based alloys. J. Mater. Sci. 45, 1993–2001 (2010)

    Google Scholar 

  • Padday, F.: Surface and Colloid Science. Wiley-Interscience, New York (1969)

    Google Scholar 

  • Park, S.-J., Seo, S.-M., Yoo, Y.-S., Jeong, H.-W., Jang, H.J.: Effects of Al and Ta on the high temperature oxidation of Ni-based superalloys. Corros. Sci. 90, 305–312 (2015)

    Google Scholar 

  • Pollock, T.M., Tin, S.: Nickel-based superalloys for advanced turbine engines: chemistry, microstructure, and properties. J. Propuls. Power. 22(2), 361–374 (2006)

    Google Scholar 

  • Quested, P.N., Brooks, R.F., Chapman, L., Morrell, R., Youssef, Y., Mills, K.C.: Measurement and estimation of thermophysical properties of nickel based superalloys. Mater. Sci. Technol. 25, 154–162 (2009)

    Google Scholar 

  • Rayleigh, L.: On the capillary phenomena of jets. Proc. Royal. Soc. 29, 71–97 (1879)

    Google Scholar 

  • Reid, W.H.: The oscillation of a viscous liquid drop. Q. Appl. Math. 18, 86–89 (1960)

    MathSciNet  Google Scholar 

  • Ricci, E., Giuranno, D., Novakovic, R., Matsushita, T., Seetharaman, S., Brooks, R., Chapman, L., Quested, P.: Density, surface tension, and viscosity of CMSX-4 superalloy. Int. J. Thermophys. 28(4), 1304–1321 (2007)

    Google Scholar 

  • Rösler, J., Näth, O., Jäger, S., Schmitz, F., Mukherji, D.: Fabrication of nanoporous Ni-based superalloy membranes. Acta Mater. 53, 1397–1406 (2005)

    Google Scholar 

  • Sandakov, V.M., Esin, Y.O., Geld, P.V.: Enthalpies of formation of molten nickel-aluminum alloys at 1650°C. Zh. Fiz. Chim. 45, 1798 (1971) (in Russian)

    Google Scholar 

  • Singh, R.N., March, N.H.: Liquid and vapour species. In: Westbrook, J.H., Fleischer, R.L. (eds.) Intermetallic Compounds, Principles and Practice, vol. 1, pp. 661–686. Wiley, Chichester (1995)

    Google Scholar 

  • Steeb, S., Falch, S., Lamparter, P.: Struktur und thermisches Verhalten rasch abgeschreckter Legierungen. Z. Metallkd. 75(8), 599–613 (1984) (in German)

    Google Scholar 

  • Sudavtsova, V.S., Shuvalov, A.V., Sharkina, N.O.: Thermodynamic properties of liquid binary Al-Cr (Ni) alloys. Rasplavy. 4, 97–99 (1990)

    Google Scholar 

  • Thermolab Final Report. ESA MAP Contract Number AO-99-022. 2003

  • Thermolab Final Report. ESA MAP AO-99-022. 2006

  • Thermolab Report. ESA MAP AO-99-022. September 2007

  • Tsamopoulos, J.A., Brown, R.A.: Nonlinear oscillations of inviscid drops and bubbles. J. Fluid Mech. 127, 519–537 (1983)

    MATH  Google Scholar 

  • Wang, Y., Liu, Z.-K., Chen, L.-Q.: Thermodynamic properties of Al, Ni, NiAl, and Ni3Al from first-principles calculations. Acta Mater. 52, 2665–2671 (2004)

    Google Scholar 

  • Wang, J.C., Osawa, M., Yokokawa, T., Harada, H., Enomoto, M.: Modeling the microstructural evolution of Ni-base superalloys by phase field method combined with CALPHAD and CVM. Comput. Mater. Sci. 39(4), 871–879 (2007)

    Google Scholar 

  • Weber, J.H., Khalfalla, Y.E., Benyounis K.Y.: Nickel-based superalloys: alloying methods and thermomechanical processing. In: BT – Reference Module in Materials Science and Materials Engineering. Elsevier BV, (Amsterdam) Web 2016. doi: https://doi.org/10.1016/B978-0-12-803581-8.03383-X)

  • Werkovits, A., Leitner, T., Pottlacher, G.R.: Surface tension of liquid nickel: re-evaluated and revised data. High Temp.- High Press. 49, 107–124 (2020)

    Google Scholar 

  • Wunderlich, R.K., Fecht, H.-J.: Surface tension and viscosity of NiAl catalytic precursor alloys from microgravity experiments. Int. J. Mat. Res. 102(9), 1164–1173 (2011)

    Google Scholar 

  • Wunderlich, R.K., Fecht, H.-J., Lohöfer, G.: Surface tension and viscosity of the Ni-based superalloys LEK94 and CMSX-10 measured by the oscillating drop method on board a parabolic flight. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 48, 237–246 (2017)

    Google Scholar 

  • Wunderlich, R.K., Hecht, U., Hediger, F., Fecht, H.-J.: Surface tension, viscosity, and selected thermophysical properties of Ti48Al48Nb2Cr2, Ti46Al46Nb8, and Ti46Al46Ta8 from microgravity experiments. Adv. Eng. Mater. 20(1–9), 1800346 (2018)

    Google Scholar 

  • Xiao, X., Hyers, R.W., Wunderlich, R.K., Fecht, H.-J., Matson, D.M.: Deformation induced frequency shifts of oscillating droplets during molten metal surface tension measurement. Appl. Phys. Lett. 113, 011903 (2018)

    Google Scholar 

  • Zeifert, B., Salmones Blasquez, J., Cabanas Moreno, J.G., Caldero, H.A.: Raney-nickel catalysts produced by mechanical alloying. Rev. Adv. Mater. Sci. 18, 632–638 (2008)

    Google Scholar 

Download references

Acknowledgements

The reported work was partially performed in the framework of the ESA-MAP project ThermoProp (AO-099-022 and AO-2009-1020).

M. M., R. W. and H.-J. F. further acknowledge funding from the DLR Space Administration with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) under Grant No. 50WM1759.

The support from the Institute of Materials Physics in Space of the DLR, Cologne in conducting the experiments during the parabolic flight campaigns and its support in experiment preparation is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Novakovic.

Additional information

This article belongs to the Topical Collection: The Effect of Gravity on Physical and Biological Phenomena, Guest Editor: Valentina Shevtsova

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novakovic, R., Mohr, M., Giuranno, D. et al. Surface Properties of Liquid Al-Ni Alloys: Experiments Vs Theory. Microgravity Sci. Technol. 32, 1049–1064 (2020). https://doi.org/10.1007/s12217-020-09832-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-020-09832-w

Keywords

Navigation