Skip to main content
Log in

Evaluation of hydroxyapatite- and zinc-coated Ti-6Al-4V surface for biomedical application using electrochemical process

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

In this research, the cell viability is tested on the surface-modified implants. Electrochemical setup is used for coating the hydroxyapatite (HA) powder and nano zinc particle (Zn)n on the Ti-6Al-4 V alloy. The electrolyte is prepared by mixing the HA and (Zn)n of varying quantity, and the effect of electrochemical parameter on surface coating thickness, surface quality and cell viability was studied. Based on the study, the cell viability is observed to be maximum at HA and (Zn)n concentration of 6 g/L and 0.8 g/L, respectively. The (Zn)n concentration in the range of 0.8 to 1.2 g/L and voltage of 12–13 V is suitable for obtaining the controlled coating thickness. During the electrochemical process, the nanopores HA structures with a pore size of 215–786 nm are obtained attributes for better cells attachment on the surface. The cell viability is found high (0.366) at 6 g/L HA and 1.6 g/L of (Zn)n concentration at 14 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Geetha, M., Singh, A.K., Asokamani, R., Gogia, A.K.: Ti based biomaterials, the ultimate choice for orthopaedic implants–a review. Prog-Mater-Sci. 54, 397–425 (2009)

    Article  CAS  Google Scholar 

  2. Li, Y., Yang, C., Zhao, H., Qu, S., Li, X., Li, Y.: New developments of Ti-based alloys for biomedical applications. Materials. 7, 1709–1800 (2014)

    Article  Google Scholar 

  3. Vadakkumpurath, S., Venugopal, A.N., Llattil, S.: Influence of micro-textures on antibacterial behaviour of titanium-based implant surfaces: In vitro studies. Biosurf Biotribol. 5, 20–23 (2019)

    Article  Google Scholar 

  4. Niinomi, M., Nakai, M., Hieda, J.: Development of new metallic alloys for biomedical applications. Acta Biomater. 8, 3888–3903 (2012)

    Article  CAS  Google Scholar 

  5. Niinomi, M.: Mechanical properties of biomedical titanium alloys. Mater. Sci. Eng. C. 243, 231–236 (1998)

    Article  Google Scholar 

  6. Liu, X.B., Meng, X.J., Liu, H.Q., Shi, G.L., Wub, S.H., Sun, C.F., Wang, M.D., Qi, L.H.: Development and characterization of laser clad high temperature self-lubricating wear resistant composite coatings on Ti–6Al–4V alloy. Mater. Des. 55, 404–409 (2014)

    Article  CAS  Google Scholar 

  7. Minagar, S., Berndt, C.C., Wang, J., Ivanova, E., Wen, C.: A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces. Acta Biomater. 8, 2875–2888 (2012)

    Article  CAS  Google Scholar 

  8. Hacioglu, T., Evis, Z., Tezcaner, A., Aydınol, M.K.: Effects of surface pretreatments and coating period on hydroxyapatite coating of Ti6Al4V alloy. J. Aust. Ceram. Soc. 1–13 (2019)

  9. Søballe, K.: Hydroxyapatite ceramic coating for bone implant fixation: mechanical and histological studies in dogs. Acta Orthop. Scand. 64, 1–58 (1993)

    Article  Google Scholar 

  10. Daugaard, H., Elmengaard, B., Bechtold, J.E., Jensen, T., Soballe, K.: The effect on bone growth enhancement of implant coatings with hydroxyapatite and collagen deposited electrochemically and by plasma spray. J. Biomed. Mater. Res. A. 92, 913–921 (2010)

    Google Scholar 

  11. Nuswantoro, N.F., Budiman, I., Septiawarman, A., Tjong, D.H., Manjas, M.: Effect of applied voltage and coating time on nano hydroxyapatite coating on titanium alloy Ti6Al4V using electrophoretic deposition for orthopaedic implant application. In: IOP Conference Series: Materials Science and Engineering, vol. 547, p. 012004. IOP Publishing (2019)

  12. Rossi, L., Migliaccio, S., Corsi, A., Bianco, P., Teti, A., Gambelli, L., Cianfarani, S., Paoletti, F., Branca, F.: Reduced growth and skeletal changes in zinc-deficient growing rats are due to impaired growth plate activity and inanition. J. Nutr. 131, 1142–1146 (2001)

    Article  CAS  Google Scholar 

  13. Thanigaivelan, R., Arunachalam, R.M., Madhan, C., Kumar, R.R., Muthuselvam, M.: Impact of electrochemical passivation on Burr suppression of Ti–4Al–6V alloy during machining. Surf. Eng. Appl. Electrochem. 55, 424–429 (2019)

    Article  Google Scholar 

  14. Ur Rahman, Z., Pompa, L., Haider, W.: Influence of electropolishing and magnetoelectropolishing on corrosion and biocompatibility of titanium implants. J. Mater. Eng. 23, 3907–3915 (2014)

    CAS  Google Scholar 

  15. Kar, A., Raja, K.S., Misra, M.: Electrodeposition of hydroxyapatite onto nanotubular TiO2 for implant applications. Surf. Coat. Technol. 201, 3723–3731 (2006)

    Article  CAS  Google Scholar 

  16. Manso, M., Jimenez, C., Morant, C., Herrero, P., Martınez-Duart, J.M.: Electrodeposition of hydroxyapatite coatings in basic conditions. Biomaterials. 21, 755–1761 (2000)

    Article  Google Scholar 

  17. Prasad, B.E., Kamath, P.V.: Electrodeposition of dicalcium phosphate dihydrate coatings on stainless steel substrates. Bull. Mater. Sci. 36, 475–481 (2013)

    Article  CAS  Google Scholar 

  18. Manonmani, R., Vinodhini, S.P., Venkatachalapathy, B., Sridhar, T.M.: Electrochemical, mechanical and osseointegration evaluation of NBPC-coated 316L SS by EPD. Surf. Eng. 34, 511–519 (2018)

    Article  CAS  Google Scholar 

  19. Qiu, D., Yang, L., Yin, Y., Wang, A.: Preparation and characterization of hydroxyapatite/titania composite coating on NiTi alloy by electrochemical deposition. Surf. Coat. Technol. 205(10), 3280–3284 (2011)

    Article  CAS  Google Scholar 

  20. Yan, Y., Zhang, X., Mao, H., Huang, Y., Ding, Q., Pang, X.: Hydroxyapatite/gelatin functionalized graphene oxide composite coatings deposited on TiO2 nanotube by electrochemical deposition for biomedical applications. Appl. Surf. Sci. 329, 76–82 (2015)

    Article  CAS  Google Scholar 

  21. Yang, F., Dong, W., He, F., Wang, X., Zhao, S., Yang, G.: Osteoblast response to porous titanium surfaces coated with zinc-substituted hydroxyapatite. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 113, 313–318 (2012)

    Article  Google Scholar 

  22. Takeda, I., Serizawa, S., Kaneko, A.: Fabrication of micro-structured scaffold using self-assembled particles and effects of surface geometries on cell adhesion. Mech Eng J. 3, 1–8, 15–1–00521 (2016)

    Google Scholar 

  23. Thanigaivelan, R., Arunachalam, R.M., Nithish, A., Venkatesh, S., Naveenkumar, P., Selvaganapathy, S., Aravind, A.S.: Optimization of laser and electrochemical process parameters for surface modification of hardness and hydrophobicity on 316L steel. Laser Eng. 45, 69–84 (2020)

    CAS  Google Scholar 

  24. Teng, H.P., Yang, C.J., Lin, J.F., Huang, Y.H., Lu, F.H.: A simple method to functionalize the surface of plasma electrolytic oxidation produced TiO2 coatings for growing hydroxyapatite. Electrochim. Acta. 193, 216–224 (2016)

    Article  CAS  Google Scholar 

  25. Havlikova, J., Strasky, J., Vandrovcova, M., Harcuba, P., Mhaede, M., Janecek, M., Bacakova, L.: Innovative surface modification of Ti–6Al–4V alloy with a positive effect on osteoblast proliferation and fatigue performance. Mater. Sci. Eng. C. 39, 371–379 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Thanigaivelan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Thanigaivelan, R., Rajanikant, G.K. et al. Evaluation of hydroxyapatite- and zinc-coated Ti-6Al-4V surface for biomedical application using electrochemical process. J Aust Ceram Soc 57, 107–116 (2021). https://doi.org/10.1007/s41779-020-00517-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-020-00517-6

Keywords

Navigation